Anode with the Active Layer for Electrosynthesizing Ozone in a System with Solid Polymer Electrolyte

S. V. Akel’kina S. V. Akel’kina , A. S. Pushkarev A. S. Pushkarev , S. A. Grigoriev S. A. Grigoriev , I. V. Pushkareva I. V. Pushkareva , V. N. Fateev V. N. Fateev
Российский электрохимический журнал
Abstract / Full Text

The synthesis of catalytic coatings on porous titanium electrodes by the method of magnetron sputtering is considered. The content of dopant ions Fe3+ and F is optimized as regards the activity and stability of the PbO2 catalyst in the reaction of ozone electrogeneration as well as the current efficiency with respect to ozone. It is shown that the best characteristics of the electrochemical ozone generator are observed on the PbO2 catalyst doped with Fe3+ and F ions in the amount of 3–4 and 1–2 at %, respectively.

Author information
  • National Research Center “Kurchatov Institute,”, Moscow, 123182, Russia

    S. V. Akel’kina, A. S. Pushkarev, I. V. Pushkareva & V. N. Fateev

  • National Research University “Moscow Power Engineering Institute,”, Moscow, 111250, Russia

    A. S. Pushkarev, S. A. Grigoriev & I. V. Pushkareva

  1. Swaminathan, M., Muruganandham, M., and Sillanpaa, M., Advanced oxidation processes for wastewater treatment, Int. J. Photoenergy, 2013, Article ID683682, http://dx.doi.org/. doi 10.1155/2013/683682
  2. Grigor'ev, S.A., Pushkarev, A.S., Pushkareva, I.V., and Bessarabov, D.G., Electrochemical treatment of water in a system with solid polymer electrolyte, Voda: Khim. Ekologiya, 2016, no. 3, p. 85.
  3. Pushkarev, A.S., Pushkareva, I.V., and Grigoriev, S.A., Electrochemical generation of ozone in a system with a solid polymer electrolyte, Russ. J. Appl. Chem., 2016, vol. 89, no. 7, p. 1054.
  4. Grimm, J., Bessarabov, D., and Sanderson, R., Review of electro-assisted methods for water purification, Desalination, 1998, vol. 115, p. 285.
  5. Bicknell, D.L. and Jain, R.K., Ozone disinfection of drinking water—technology transfer and policy issues, Environ. Eng. Policy, 2002, vol. 3, p. 55.
  6. Grigor’ev, S.A., Grigor’ev, A.S., Kuleshov, N.V., Fateev, V.N., and Kuleshov, V.N., Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems, Therm. Eng., 2015, vol. 62, no. 2. p. 81.
  7. Fateev, V.N., Grigor’ev, S.A., Maruseva, I.V., Baranov, I.E., and Dzhus’, K.A., Membrane electrolysis for renewable energetics, Sbornik materialov III Mezhdunarodnoi nauchno-prakticheskoi konf. “Teoriya i praktika sovremennykh elektrokhimicheskikh proizvodstv”, (Collection of Papers of the III International Scientific-Practical Conference “Theory and Practice of Modern Electrochemical Industries”), St. Petersburg, 2014, p. 5.
  8. Bessarabov, D.G., Electrochemical generation of highconcentration ozone for water treatment, The WISA 2000 Biennial Conference, 2000, Sun City, South Africa.
  9. Wang, J., Li, X., Guo, L., and Luo, X., Effect of surface morphology of lead dioxide particles on their ozone generating performance, Appl. Surf. Sci., 2008, vol. 254, p. 6666.
  10. Amadelli, R. and Velichenko, A.B., Lead dioxide electrodes for high potential anodic processes, J. Serb. Chem. Soc., 2001, vol. 66, p. 835.
  11. Amadelli, R., Armelao, L., Velichenko, A.B., Nikolenko, N.V., Girenko, D.V., Kovalyov, S.V., and Danilov, F.I., Oxygen and ozone evolution at fluoride modified lead dioxide electrodes, Electrochim. Acta, 1999, vol. 45, p. 713.
  12. Andrade, L.S, Ruotolo, L.A.M., Rocha-Filho, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Vicente Garcia-Garcia, V., and Montiel, V., On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater, Chemosphere, 2007, vol. 66, p. 2035.
  13. Tong, S., Zhang, T., and Ma, C., Oxygen evolution behavior of PTFE–F––PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng., 2008, vol. 16, p. 885.
  14. Simond, O. and Comninellis, Ch., Anodic oxidation of organics on Ti/IrO2 anodes using Nafion® as electrolyte, Electrochim. Acta, 1997, vol. 42. p. 2013.
  15. Rajab, M., Heim, C., Letzel, T., Drewes, J.E., and Helmreich, B., Electrochemical disinfection using boron-doped diamond electrode—The synergetic effects of in situ ozone and free chlorine generation, Chemosphere, 2015, vol. 121, p. 47.
  16. Kraft, A., Stadelmann, M., Wunsche, M., and Blaschke, M., Electrochemical destruction of organic substances in deionized water using diamond anodes and a solid polymer electrolyte, Electrochem. Commun., 2006, vol. 8, p. 155.
  17. Honda, Y., Ivandini, T.A., Watanabe, T., Murata, K., and Einaga, Y., An electrolyte-free system for ozone generation using heavily boron-doped diamond electrodes, Diamond Relat. Mater., 2013, p. 40, p. 7.
  18. Awad, M.I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., and Ohsaka, T., Ozone electrogeneration at a high current efficiency using a tantalum oxide–platinum composite electrode, Electrochem. Commun., 2006, vol. 8, p. 1263.
  19. Kitsuka, K., Kaneda, K., Ikematsu, M., Iseki, M., Mushiake, K., and Ohsaka, T., Ex situ and in situ characterization studies of spin-coated TiO2 film electrodes for the electrochemical ozone production process, Electrochim. Acta, 2009, vol. 55, p. 31.
  20. Mohammad, A.M., Kitsuka, K., Abdullah, A.M., Awad, M.I., Okajima, T., Kaneda, K., Ikematsu, M., and Ohsaka, T., Development of spin-coated Si/TiOx/Pt/TiOx electrodes for the electrochemical ozone production, Appl. Surf. Sci., 2009, vol. 255, p. 8458.
  21. Zakaria, K. and Christensen, P.A., The use of Ni/Sb–SnO2-based membrane electrode assembly for electrochemical generation of ozone and the decolourisation of Reactive Blue 50 dye solutions, Electrochim. Acta, 2014, vol. 135, p. 11.
  22. Fateev V.N., Akel’kina, S.V., Velichenko, A.B., and Girenko, D.V., Formation of oxygen and ozone in the system with a solid polymer electrolyte: The influence of modifying PbO2, Russ. J. Electrochem., 1998, vol. 34, p. 815.
  23. Velichenko, A.B., Amadelli, R., Zucchini, G.L., Girenko, D.V., and Danilov, F.I., Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts, Electrochim. Acta, 2000, vol. 45, p. 4341.
  24. Shmychkova, O., Luk’yanenko, T., and Velichenko, A., Bismuth doped PbO2 coatings: morphology and electrocatalytic properties, Univers. J. Chem., 2013, vol. 1, p. 30. http://www.hrpub.org/journals/jour_archive.php?id=64
  25. Wang, J. and Jing, X., Study on the effect of lead dioxide particles on the anodic electrode performance for ozone generation, Int. J. Electrochem., 2006, vol. 74. p. 539.
  26. Velichenko, A.B., Girenko, D.V., Kovalyov, S.V., Gnatenko, A.N., Amadelli, R., and Danilov, F.I., Lead dioxide electrodeposition and its application: influence of fluoride and iron ions, J. Electroanal. Chem., 1998, vol. 454, p. 203.
  27. Amadelli, R., Maldotti, A., Molinari, A., Danilov, F.I., and Velichenko, A.B., Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at b-PbO2 anodes in acid media, J. Electroanal. Chem., 2002, vol. 534, p. 1.
  28. Velichenko, A.B., Girenko, D.V., Nikolenko, N.V., Amadelli, R., Baranova, E.A., and Danilov, F.I., Oxygen evolution on lead dioxide modified with fluorine and iron, Russ. J. Electrochem., 2000, vol. 36, p. 1216.
  29. Hyde, M.E., Jacobs, R.M.J., and Compton, R.G., An AFM study of the correlation of lead dioxide electrocatalytic activity with observed morphology, J. Phys. Chem. B, 2004, vol. 108, p. 6381.
  30. Monahov, B. and Pavlov, D., Hydrated structures in the anodic layer formed on lead electrodes in H2SO4 solution, J. Appl. Electrochem., 1993, vol. 23, p. 1244.
  31. Babak, A.A., Fateev, V.N., Amadelli, R., and Potapova, G.F., Ozone electrosynthesis in an electrolyzer with solid polymer electrolyte, Russ. J. Electrochem., 1994, vol. 30, p. 739.
  32. Feng, J., Johnson, D.C., Lowery, S.N., and Carey, J.J., Electrocatalysis of anodic oxygen-transfer reactions evolution of ozone, J. Electrochem. Soc., 1994, vol. 141, p. 2708.
  33. Grigoriev, S.A., Fedotov, A.A., Martemianov, S.A., and Fateev, V.N., Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals, Russ. J. Electrochem., 2014, vol. 50, p. 638.
  34. Fedotov, A.A., Grigor’ev, S.A., Glukhov, A.S., Dzhus’, K.A., and Fateev, V.N., Synthesis of nanostructured electrocatalysts based on magnetron ion sputtering, Kinet. Catal., 2012, vol. 53, p. 753.]
  35. Sputtering of Solids by Ion Bombardment, Berish, R. Ed., Berlin: Springer, 1982; translated into Russian.
  36. Gel'man, N.E., Terent’eva, E.A., and Shanina, T.M., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of Quantitative Organic Elementary Microanalysis), Moscow: Khimija, 1987.
  37. Grigoriev, S.A., Fateev, V.N., Lutikova, E.K., Grigoriev, A.S., Bessarabov, D.G., Wei, X., and Ge, J., CNF-supported platinum electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell, Int. J. Electrochem. Sci., 2016, vol. 11, p. 2085.