Fabrication of a Novel Electrochemical Sensor for Determination of Riboflavin in Different Drink Real Samples

M. Derakhshan M. Derakhshan , T. Shamspur T. Shamspur , E. Molaakbari E. Molaakbari , A. Mostafavi A. Mostafavi , A. Saljooqi A. Saljooqi
Российский электрохимический журнал
Abstract / Full Text

In the present study an electrochemical sensor has been produced for measuring riboflavin with high sensitivity and selectivity. Deferential pulse technique has been used to measure the current of riboflavin on the modified glassy carbon electrode. At first, the synthesis of the GO/Au/polyEAmVS nanocomposite was performed. Synthetic nanocomposite was characterized by TEM and XRD methods and it was used for modification of glassy carbon electrode. Effective conditions were optimized for the measurement of riboflavin including pH and buffer concentration and modifier concentration. Calibration curve was linear in the concentration range of 1.0–100.0 μM under optimal conditions. A detection limit of 7.2 × 10–2 μM and relative standard deviation of 3.79% have been obtained. The prepared sensor has a good performance for measuring the amount of riboflavin in drink real samples.

Author information
  • Department of Chemistry, Shahid Bahonar University of Kerman, 76175-133, Kerman, Iran

    M. Derakhshan, T. Shamspur, E. Molaakbari, A. Mostafavi & A. Saljooqi

  1. Yin, C., Cao, Y., Ding, S., and Wang, Y., Rapid determination of water-and fat-soluble vitamins with microemulsion electrokinetic chromatography, J. Chromatogr. A, 2008, vol. 1193, p. 172.
  2. Powers, H.J., Riboflavin (vitamin (vitamin B-2) and health, Am. J. Clin. Nutr., 2003, vol. 77, p. 1352.
  3. Voicescu, M., Ionita, G., Beteringhe, A., Vasilescu, M., and Meghea, A., The antioxidative activity of riboflavin in the presence of antipyrin, J. Fluoresc., 2008, vol. 18, p. 953.
  4. Kotkar, R.M., Desai, P.B., and Srivastava, A.K., Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes, Sens. Actuat. B-Chem., 2007, vol. 124, p. 90.
  5. Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., and Hayakawa, Y., Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, Analyst., 2013, vol. 138, p. 2061.
  6. Perez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Val, O., Photochemical spectrophotometric determination of riboflavin and riboflavin 5′-phosphate by manual and flow injection methods, Analyst, 1994, vol. 119, p. 1199.
  7. López-Leytón, T.L., Yusty, M.L., and Piñeiro, M.A., Constant-wavelength synchronous spectrofluorimetry for determination of riboflavin in anchovies, J. Anal. Chem., 1998, vol. 362, p. 341.
  8. Mandal, S.M., Mandal, M., Ghosh, A.K., and Dey, S., Rapid determination of vitamin B2 and B12 in human urine by isocratic liquid chromatography, Anal. Chim. Acta, 2009, vol. 640, p. 110.
  9. Sikorska, E., Gliszczyńska-Świgło, A., Insińska-Rak, M., Khmelinskii, I., De Keukeleire, D., and Sikorski, M., Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods, Anal. Chim. Acta, 2008, vol. 613, p. 207.
  10. Niazi, A., Yazdanipour, A., Ghasemi, J., and Abbasi, A., Determination of riboflavin in human plasma by excitation-emission matrix fluorescence and multi-way analysis, J. Chin. Chem. Soc., 2006, vol. 53, p. 503.
  11. Wang, X.M. and Chen, H.Y., A spectroelectrochemical study of the interaction of riboflavin with β-cyclodextrin, Spectrochim. Acta A, 1996, vol. 52, p. 599.
  12. Gliszczyńska-Świgło, A. and Koziołowa, A., Chromatographic determination of riboflavin and its derivatives in food, J. Chromatogr A, 2000, vol. 881, p. 285.
  13. Jakobsen, J., Optimisation of the determination of thiamin, 2-(1-hydroxyethyl) thiamin, and riboflavin in food samples by use of HPLC, Food Chem., 2008, vol. 106, p. 1209.
  14. Roushani, M., Abdi, Z., Daneshfar, A., and Salimi, A., Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode, J. Appl. Electrochem., 2013, vol. 43, p. 1175.
  15. Anisimova, L.S., Mikheeva, E.V., and Slipchenko, V.F., Voltammetric determination of riboflavin in vitaminized supplements and feeds, J. Anal. Chem., 2001, vol. 56, p. 658.
  16. Safavi, A., Maleki, N., Ershadifar, H., and Tajabadi, F., Development of a sensitive and selective riboflavin sensor based on carbon ionic liquid electrode, Anal. Chim. Acta, 2010, vol. 674, p. 176.
  17. Kang, J., Kim, T., Tak, Y., Lee, J.H., and Yoon, J., Cyclic voltammetry for monitoring bacterial attachment and biofilm formation, J. Ind. Eng. Chem., 2012, vol. 18, p. 800.
  18. Chatterjee, A. and Foord, J.S., Biological applications of diamond electrodes; electrochemical studies of riboflavin, Diamond. Relat. Mater., 2009, vol. 18, p. 899.
  19. Pereira, A.C., Santos, A., and Kubota, L.T., Electrochemical behavior of riboflavin immobilized on different matrices, J. Colloid. Interface. Sci., 2003, vol. 265, p. 351.
  20. Ly, S.Y., Yoo, H.S., and Ahn, J.Y., Pico molar assay of riboflavin in human urine using voltammetry, Food Chem., 2011, vol. 127, p. 270.
  21. Wang, Y., Xu, B., Zhu, G., and Wang, E., Electrochemical quartz crystal microbalance study of the electrochemical behavior of riboflavin at gold electrodes, Electroanalysis, 1997, vol. 9, p. 1422.
  22. Zhu, C., Yang, G., Li, H., Du, D., and Lin, Y., Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 2014, vol. 87, p. 230.
  23. Lu, W., Wallace, G.G., and Karayakin, A.A., Use of Prussian blue/conducting polymer modified electrodes for the detection of cytochrome C, Electroanalysis, 1998, vol. 10, p. 472.
  24. Opallo, M. and Lesniewski, A., A review on electrodes modified with ionic liquids, J. Electroanal. Chem., 2011, vol. 656, p. 2.
  25. Bai, H. and Shi, G., Gas sensors based on conducting polymers, Sensors, 2007, vol. 7, p. 267.
  26. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H., Nano-graphene oxide for cellular imaging and drug delivery, Nano Res., 2008, vol. 1, p. 203.
  27. Bielawski, C.W., Dreyer, D.R., Park, S., and Ruoff, R.S., The chemistry of grapheme oxide, Chem. Soc. Rev., 2010, vol. 39, p. 228.
  28. Wei, Z., Barlow, D.E., and Sheehan, P.E., The assembly of single-layer graphene oxide and graphene using molecular templates, Nano Lett., 2008, vol. 8, p. 3141.
  29. Ge, S., Yan, M., Lu, J., Yu, F., Yu, J., Song, X., and Yu, S., Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for l-cysteine analysis, Biosens. Bioelectron., 2012, vol. 31, p. 49.
  30. Erdem, A., Muti, M., Papakonstantinou, P., Canavar, E., Karadeniz, H., Congur, G., and Sharma, S., Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction, Analyst, 2012, vol. 137, p. 2129.
  31. Song, Y., He, Z., Hou, H., Wang, X., and Wang, L., Architecture of Fe3O4-graphene oxide nanocomposite and its application as a platform for amino acid biosensing, Electrochim. Acta, 2012, vol. 71, p. 58.
  32. Lou, T., Chen, Z., Wang, Y., and Chen, L., Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 1568.
  33. Tang, Z., Shen, S., Zhuang, J., and Wang, X., Noble metal promoted three-dimensional macroassembly of single-layered graphene oxide, Angew. Chem., 2010, vol. 122, p. 4707.
  34. Wang, Y., Lu, J., Tang, L., Chang, H., and Li, J., Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds, Anal. Chem., 2009, vol. 81, p. 9710.
  35. Bai, H., Li, C., and Shi, G., Functional composite materials based on chemically converted graphene, Adv. Mater., 2011, vol. 23, p. 1089.
  36. Cote, L.J., Cruz-Silva, R., and Huang, J., Flash reduction and patterning of graphite oxide and its polymer composite, J. Am. Chem. Soc., 2009, vol. 131, p. 11027.
  37. Gong, J., Zhou, T., Song, D., and Zhang, L., Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II), Sens. Actuat. B, 2010, vol. 150, p. 491.
  38. Liu, H., Liu, Y., and Li, J., Ionic liquids in surface electrochemistry, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 685.
  39. McEwen, A.B., Ngo, H.L., LeCompte, K., and Goldman, J.L., Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc., 1999, vol. 146, p. 1687.
  40. Yang, H., Shan, C., Li, F., Han, D., Zhang, Q., and Niu, L., Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid, Chem. Commun., 2009, vol. 26, p. 3880.
  41. Mecerreyes, D., Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes, Prog. Polym. Sci., 2011, vol. 36, p. 1629.
  42. Ogihara, W., Washiro, S., Nakajima, H., and Ohno, H., Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids, Electrochim. Acta, 2006, vol. 51, p. 2614.
  43. Molaakbari, E., Mostafavi, A., Beitollahi, H., and Tohidiyan, Z., Synthesis of conductive polymeric ionic liquid/Ni nanocomposite and its application to construct a nanostructure based electrochemical sensor for determination of warfarin in the presence of tramadol, Talanta, 2017, vol. 171, p. 25.
  44. Molaakbari, E., Mostafavi, A., Tohidiyan, Z., and Beitollahi, H., Synthesis and application of conductive polymeric ionic liquid/Ni nanocomposite to construct a nanostructure based electrochemical sensor for determination of risperidone and methylphenidate, J. Electroanal. Chem., 2017, vol. 801, p. 198.
  45. Ohno, H., Yoshizawa, M., and Ogihara, W., Development of new class of ion conductive polymers based on ionic liquids, Electrochim. Acta, 2004, vol. 50, p. 255.
  46. Merza, K.S., Al-Attabi, H.D., Abbas, Z.M., and Yusr, H.A., Comparative study on methods for preparation of gold nanoparticles, Green Sust.Chem., 2012, vol. 2, p. 26.
  47. Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York: Wiley, 1964.
  48. Gribat, L.C., Babauta, J.T., Beyenal, H., and Wall, N.A., New rotating disk hematite film electrode for riboflavin detection, J. Electroanal. Chem., 2017, vol. 798, p. 42.
  49. Madhuvilakku, R., Alagar, S., Mariappan, R., and Piraman, S., Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications, Sensor. Actuat.B-Chem., 2017, vol. 253, p. 879.
  50. Shadjou, N., Hasanzadeh, M., and Omari, A., Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements, Anal. Biochem., 2017, vol. 539, p. 70.
  51. Sá, É.S., da Silva, P.S., Jost, C.L. and Spinelli, A., Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sens. Actuat. B-Chem., 2015, vol. 209, p. 423.
  52. Kowalczyk, A., Sadowska, M., Krasnodebska-Ostrega, B., and Nowicka, A.M., Selective and sensitive electrochemical device for direct VB2 determination in real products, Talanta, 2017, vol. 163, p. 72.
  53. Sumathi, C., Muthukumaran, P., Radhakrishnan, S., Ravi, G., and Wilson, J., Riboflavin detection by α‑Fe2O3/MWCNT/AuNPs-based composite and a study of the interaction of riboflavin with DNA, RSC. Adv., 2015, vol. 5, p. 17888.
  54. Santos, T.A., Barreto, L.N., Ritta, A.G.S., De Meneses, W.S., Nunes, R.S., and Semaan, F.S., Cost-effective composite electrode for the fast voltammetric screening and determination of riboflavin (B2) and pyridoxine (B6) in pharmaceuticals, Rev. Virtual Quim., 2013, vol. 5, no. 4, pp. 548–562.
  55. Wang, Y., Zhuang, Q., and Ni, Y., Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide-graphene nanocomposite modified gold electrode, J. Electroanal. Chem., 2015, vol. 736, p. 47.
  56. Nezamzadeh-Ejhieh, A. and Pouladsaz, P., Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes, J. Ind. Eng. Chem., 2014, vol. 20, p. 2146.
  57. Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., and Hayakawa, Y., Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, Analyst, 2013, vol. 138, p. 2061.