Examples



mdbootstrap.com



 
Статья
2021

Synthesis of 3a,6a-diaza-1,4-diphosphapentalenes and their halogen derivatives. Specific features of the structure and behavior in solutions


Yu. S. PanovaYu. S. Panova, A. V. KhristolyubovaA. V. Khristolyubova, V. V. SushevV. V. Sushev, N. V. ZolotarevaN. V. Zolotareva, M. D. GrishinM. D. Grishin, E. V. BaranovE. V. Baranov, G. K. FukinG. K. Fukin, A. N. KornevA. N. Kornev
Российский химический вестник
https://doi.org/10.1007/s11172-021-3305-1
Abstract / Full Text

Such ketazines as azines of acetophenone and its substituted derivatives (p-F, m-Cl, p-I, p-Me, p-OMe), acetone, dibenzyl ketone, propiophenone, and indan-2-one were studied in the reaction with phosphorus(ɪɪɪ) chloride. The possibility of the formation of 1,4-dichloro-3a,6a-diaza-1,4-diphosphapentalenes is largely determined by the nature of the starting ketazine. Diazadiphosphapentalene dichlorides exist in solution as a mixture of cis- and trans-isomers, but crystallize exclusively as 1,4-trans-isomers. Reduction of 3a,6a-diaza-1,4-diphosphapentalene dichlorides with manganese in tetrahydrofuran gives the corresponding diazadiphosphapentalenes in 52–63% yield. The electrochemical properties of the obtained compounds were studied by cyclic voltammetry. Two dichlorides of 3a,6a-diaza-1,4-diphosphapentalenes were found to have anomalous oxidation potentials of 0.29 and 0.13 V related to the formation of free diazadiphosphapentalenes in solution as a result of disproportionation under the influence of the donor solvent, which was confirmed by 31P NMR spectroscopy, electronic absorption spectroscopy, and independent syntheses.

Author information
  • G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603950, Nizhny Novgorod, Russian FederationYu. S. Panova, A. V. Khristolyubova, V. V. Sushev, N. V. Zolotareva, M. D. Grishin, E. V. Baranov, G. K. Fukin & A. N. Kornev
References
  1. A. N. Kornev, Y. S. Panova, V. V. Sushev, D. F. Dorado Daza, A. S. Novikov, A. V. Cherkasov, G. K. Fukin, G. A. Abakumov, Inorg. Chem., 2019, 58, 16144; DOI: https://doi.org/10.1021/acs.inorgchem.9b02690.
  2. A. N. Kornev, Y. S. Panova, V. V. Sushev, Phosphorus, Sulfur, Silicon, Relat. Elem., 2020, 195, 905; DOI: https://doi.org/10.1080/10426507.2020.1804150.
  3. Y. S. Panova, V. V. Sushev, D. F. Doroado Daza, N. V. Zolotareva, R. V. Rumyantcev, G. K. Fukin, A. N. Kornev, Inorg. Chem., 2020, 59, 11337; DOI: https://doi.org/10.1021/acs.inorgchem.0c00913.
  4. A. N. Kornev, V. E. Galperin, Yu. S. Panova, V. V. Sushev, A. V. Cherkasov, A. V. Arapova, G. A. Abakumov, Russ. Chem. Bull., 2018, 67, 2073; DOI: https://doi.org/10.1007/s11172-018-2331-0.
  5. A. N. Kornev, Yu. S. Panova, V. V. Sushchev, V. E. Galperin, A. V. Sheyanova, G. K. Fukin, E. V. Baranov, G. A. Abakumov, Russ. J. Coord. Chem., 2020, 46, 98; DOI: https://doi.org/10.1134/S1070328420020050.
  6. A. N. Kornev, V. V. Sushchev, N. V. Zolotareva, A. V. Arapova, V. E. Galperin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2015, 64, 228; DOI: https://doi.org/10.1007/s11172-015-0848-z.
  7. A. N. Kornev, V. V. Sushchev, V. V. Kireeva, V. E. Galperin, N. V. Zolotareva, A. V. Cherkasov, G. A. Abakumov, Dokl. Chem. (Engl. Transl.), 2015, 462, 145; DOI: https://doi.org/10.1134/S0012500815060063.
  8. A. N. Kornev, V. E. Galperin, V. V. Sushev, N. V. Zolotareva, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Eur. J. Inorg. Chem., 2016, 22, 3629; DOI: https://doi.org/10.1002/ejic.201600348.
  9. A. N. Kornev, V. E. Galperin, V. V. Sushev, Yu. S. Panova, G. K. Fukin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 2658; DOI: https://doi.org/10.1007/s11172-016-1632-4.
  10. A. N. Kornev, D. F. Dorado Daza, V. V. Sushev, Yu. S. Panova, V. E. Galperin, G. K. Fukin, E. V. Baranov, G. A. Abakumov, Russ. Chem. Bull., 2018, 67, 114; DOI: https://doi.org/10.1007/s11172-018-2045-3.
  11. A. N. Kornev, V. E. Galperin, V. V. Sushev, N. V. Zolotareva, G. K. Fukin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 2425; DOI: https://doi.org/10.1007/s11172-016-1601-y.
  12. A. N. Kornev, V. E. Galperin, Y. S. Panova, A. V. Arapova, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Z. Anorg. Allg. Chem., 2017, 643, 1208; DOI: https://doi.org/10.1002/zaac.201700223.
  13. A. N. Kornev, V. V. Sushev, Y. S. Panova, O. V. Lukoyanova, S. Yu. Ketkov, E. V. Baranov, G. K. Fukin, M. A. Lopatin, Y. G. Budnikova, G. A. Abakumov, Inorg. Chem., 2014, 53, 3243; DOI: https://doi.org/10.1021/ic500274h.
  14. A. N. Kornev, O. Y. Gorak, O. V. Lukoyanova, V. V. Sushev, J. S. Panova, E. V. Baranov, G. K. Fukin, S. Y. Ketkov, G. A. Abakumov, Z. Anorg. Allg. Chem., 2012, 638, 1173; DOI: https://doi.org/10.1002/zaac.201200042.
  15. S. Burck, D. Gudat, K. Nättinen, M. Nieger, M. Niemeyer, D. Schmid, Eur. J. Inorg. Chem., 2007, 5112; DOI: https://doi.org/10.1002/ejic.200700643.
  16. D. Gudat, Eur. J. Inorg. Chem., 1998, 1087; DOI: https://doi.org/10.1002/(SICI)1099-0682(199808)1998:8<1087::AID-EJIC1087>3.0.CO;2-3.
  17. A. N. Kornev, V. V. Sushev, Y. S. Panova, N. V. Zolotareva, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Eur. J. Inorg. Chem., 2015, 2057; DOI: https://doi.org/10.1002/ejic.201500102.
  18. F. Armbruster, U. Klingebiel, M. Noltemeyer, Z. Naturforsch., 2006, 61b, 225; DOI: https://doi.org/10.1515/znb-2006-0301.
  19. Organic Solvents. Physical Properties and Methods of Purification, Ed. A. Weissberger, Interscience Publishers, Inc., New York, 1955.
  20. J. Safari, S. Gandomi-Ravandi, RSC Adv., 2014, 4, 46224; DOI: https://doi.org/10.1039/C4RA04870A.
  21. Bruker, SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.
  22. Data Collection, Reduction and Correction Program, Crys-AlisPro 1.171.38.46, Software Package, Rigaku OD, 2015.
  23. G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.
  24. G. M. Sheldrick, SHELXTL, Version 6.14. Structure Determination Software Suite, Bruker AXS, Madison, WI, USA, 2003.
  25. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.
  26. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171.38.46, Software Package, Rigaku OD, 2015.