Статья
2017

Electrocatalytic oxidation and reduction of H2O2 on Au single crystals


Ana M. Gómez-Marín Ana M. Gómez-Marín , Ana Boronat Ana Boronat , Juan M. Feliu Juan M. Feliu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517090063
Abstract / Full Text

In this work, the reduction and oxidation of hydrogen peroxide on Au single crystals is studied in weakly adsorbing electrolytes. Results are discussed in terms of the potential of zero charge and the adsorption strength of different anions, which in turn depend on the crystallographic orientation of the electrode. Close to the reaction onset, both reactions follow the same activity trend with Au(100) and Au(111) being the most and the least active surface planes, respectively. At high potentials, gold oxides inhibit the oxidation of H2O2, which seems to be controlled by a surface process.

Author information
  • Instituto de Electroquímica, Universidad de Alicante, Alicante, E-03080, Spain

    Ana M. Gómez-Marín, Ana Boronat & Juan M. Feliu

  • Instituto de Química de São Carlos, Dept. Fisico Quimica, Universidade de São Paulo, Caixa Postal 780, SP, CEP 13566-590, Brazil

    Ana M. Gómez-Marín

References
  1. Wroblowa, H., Pan, Y.C., and Razumney, J., Electroreduction of oxygen: A new mechanistic criterion, J. Electroanal. Chem., 1976, vol. 69, p. 195.
  2. Schneider, A., Colmenares, L., Seidel, Y.E., Jusys, Z., Wickman, B., Kasemo, B., and Behm, R.J., Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1931.
  3. Seidel, Y.E., Schneider, A., Jusys, Z., Wickman, B., Kasemo, B., and Behm, R.J., Mesoscopic mass transport effects in electrocatalytic processes, Faraday Discuss., 2008, vol. 140, p. 167.
  4. Hoare, J.P., Oxygen overvoltage measurements on bright platinum in acid solutions, I: Bright platinum, J. Electrochem. Soc., 1965, vol. 112, p. 602.
  5. Hoare, J.P., Oxygen overvoltage measurements on bright platinum in acid solutions, II: Bright platinum in H2O2 stabilized acid solutions, J. Electrochem. Soc., 1965, vol. 112, p. 608.
  6. Urbach, H.B. and Bowen, R.J., Behaviour of the oxygen- peroxide couple on platinum, Electrochim. Acta, 1969, vol. 14, p. 927.
  7. Huang, J.C., Sen, R.K., and Yeager, E., Oxygen reduction on platinum in 85% orthophosphoric acid, J. Electrochem. Soc., 1979, vol. 126, p. 786.
  8. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low–index single–crystal surfaces in sulfuric acid solution: rotating ring- Pt(hkl) disk studies, J. Phys. Chem., 1995, vol. 99, p. 3411.
  9. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low–index single–crystal surfaces in alkaline solution: Rotating ring disk Pt(hkl) studies, J. Phys. Chem., 1996, vol. 100, p. 6715.
  10. Grgur, B.N., Markovic, N.M., and Ross, P.N., Temperature- dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions, Can. J. Chem., 1997, vol. 75, p. 1465.
  11. Maciá, M.D., Campiña, J.M., Herrero, E., and Feliu, J.M., On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media, J. Electroanal. Chem., 2004, vol. 564, p. 141.
  12. Bianchi, G., Mazza, F., and Mussini, T., Catalytic decomposition of acid hydrogen peroxide solutions on platinum, iridium, palladium and gold surfaces, Electrochim. Acta, 1962, vol. 7, p. 457.
  13. Hoare, J.P., Oxygen overvoltage on bright gold, I, Electrochim. Acta, 1966, vol. 11, p. 311.
  14. Hoare, J.P., Oxygen overvoltage on bright gold, II: Bright gold in H2O2-stabilized acid solutions, Electrochim. Acta, 1966, vol. 11, p. 549.
  15. Bianchi, G., Mazza, F., and Mussini, T., Oxygen and hydrogen-peroxide processes on gold electrodes in acid solutions, Electrochim. Acta, 1966, vol. 11, p. 1509.
  16. Zurilla, R.W., Sen, R.K., and Yeager, E., The kinetics of the oxygen reduction reaction on gold in alkaline solution, J. Electrochem. Soc., 1978, vol. 125, p. 1103.
  17. Adzic, R.R., Markovic, N.M., and Vesovic, V.B., Structural effects in electrocatalysis oxygen reduction on the Au(100) single crystal electrodes, J. Electroanal. Chem., 1984, vol. 165, p. 105.
  18. Markovic, N.M., Adzic, R.R., and Vesovic, V.B., Structural effects in electrocatalysis oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations, J. Electroanal. Chem., 1984, vol. 165, p. 121.
  19. Anastasijevic, N.A., Strbac, S., and Adzic, R.R., Oxygen reduction on the Au (311) electrode surface in alkaline electrolyte, J. Electroanal. Chem., 1988, vol. 240, p. 239.
  20. Adzic, R.R., Strbac, S., and Anastasijevic, N., Electrocatalysis of oxygen on single crystal gold electrodes, Mater. Chem. Phys., 1989, vol. 22, p. 349.
  21. Markovic, N.M., Tidewell, I.M., and Ross, P.N., Oxygen and hydrogen peroxide reduction on the Au(100) surface in alkaline electrolyte: the roles of surface structure and hydroxide adsorption, Langmuir, 1994, vol. 10, p. 1.
  22. Prieto, A., Hernández, J., Herrero, E., and Feliu, J.M., The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes, J. Solid State Electrochem., 2003, vol. 7, p. 599.
  23. Blizanac, B.B., Lucas, C.A., Gallagher, M.E., Arenz, M., Ross, P.N., and Markovic, N.M., Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect, J. Phys. Chem. B, 2004, vol. 108, p. 625.
  24. Jirkovsky, J.S., Halasa, M., and Schiffrin, D.J., Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8042.
  25. Zheng, Y.L., Mei, D., Chen, Y.-X., and Ye, S., The redox reaction of hydrogen peroxide at an Au(100) electrode: Implications for oxygen reduction kinetics, Electrochem. Commun., 2014, vol. 39, p. 19.
  26. Kolthoff, I.M. and Jordan, J., Oxygen induced electroreduction of hydrogen peroxide at the rotated platinum electrode, J. Am. Chem. Soc., 1952, vol. 74, p. 570.
  27. Kolthoff, I.M. and Jordan, J., Oxygen induced electroreduction of hydrogen peroxide and reduction of oxygen at the rotated gold wire electrode, J. Am. Chem. Soc., 1952, vol. 74, p. 4801.
  28. Bockris, J.O.M. and Oldfield, L.F., The oxidationreduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes, Trans. Faraday Soc., 1955, vol. 51, p. 249.
  29. Bowen, R.J. and Urbach, H.B., Dynamic behaviour of the oxygen–peroxide couple on platinum, J. Chem. Phys., 1968, vol. 49, p. 1206.
  30. Hoare, J.P., A study of the rest potentials in the goldoxygen- acid system, J. Electrochem. Soc., 1963, vol. 110, p. 245.
  31. Hoare, J.P., Potentiostatic polarization studies on platinum, gold and rhodium oxygen electrodes, Electrochim. Acta, 1966, vol. 11, p. 203.
  32. Wroblowa, H., Rao, M.L.B., Damjanovic, A., and Bockris, J.O.M., Adsorption and kinetics at platinum electrodes in the presence of oxygen at zero net current, J. Electroanal. Chem. Interfacial Electrochem., 1967, vol. 15, p. 139.
  33. Hickling, A. and Wilson, W.H., The anodic decomposition of hydrogen peroxide, J. Electrochem. Soc., 1951, vol. 98, p. 425.
  34. Huq, A.K.M.S. and Makrides, A.C., Hydrogen peroxide reactions on gold electrodes, J. Electrochem. Soc., 1965, vol. 112, p. 756.
  35. Hall, S.B., Khudaish, E.A., and Hart, A.L., Electrochemical oxidation of hydrogen peroxide at platinum electrodes, Part 1: An adsorption–controlled mechanism, Electrochim. Acta, 1998, vol. 43, p. 579.
  36. Katsounaros, I., Schneider, W.B., Meier, J.C., Benedikt, U., Biedermann, P.U., Auer, A.A., and Mayrhofer, K.J.J., Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 7384.
  37. Noël, J.M., Latus, A., Lagrost, C., Volanschi, E., and Hapiot, P., Evidence for OH radical production during electrocatalysis of oxygen reduction on Pt surfaces: consequences and application, J. Am. Chem. Soc., 2012, vol. 134, p. 2835.
  38. Gómez-Marín, A.M., Schouten, K.J.P., Koper, M.T.M., and Feliu, J.M., Interaction of hydrogen peroxide with a Pt(111) electrode, Electrochem. Commun., 2012, vol. 22, p. 153.
  39. Katsounaros, I., Schneider, W.B., Meier, J.C., Benedikt, U., Biedermann, P.U., Cuesta, A., Auer, A.A., and Mayrhofer, K.J.J., The impact of spectator species on the interaction of H2O2 with platinum–implications for the oxygen reduction reaction pathways, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 8058.
  40. Sitta, E., Gómez-Marín, A.M., Aldaz, A., and Feliu, J.M., Electrocatalysis of H2O2 reduction/oxidation at model platinum surfaces, Electrochem. Commun., 2013, vol. 33, p. 39.
  41. Clavilier, J., Armand, D., Sun, S., and Petit, M., Electrochemical adsorption behavior of platinum stepped surfaces in sulphuric acid solutions, J. Electroanal. Chem., 1986, vol. 205, p. 267.
  42. Rodes, A., Herrero, E., Feliu, J.M., and Aldaz, A., Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media, J. Chem. Soc. Faraday. Trans., 1996, vol. 92, p. 3769.
  43. Korzeniewsky, C., Climent, V., and Feliu, J.M., Electrochemistry at platinum single crystal electrodes, in Electroanalytical Chemistry, A Series of Advances, vol. 24, Chap. 2, Bard, A.J. and Zoski, C.G., Eds., CRC Press, 2012, p. 75.
  44. Martínez-Hincapié, R., Sebastián-Pascual, P., Climent, V., and Feliu, J.M., Exploring the interfacial neutral pH region of Pt(111) electrodes, Electrochem. Commun., 2015, vol. 58, p. 62.
  45. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., and Stoicoviciu, L., Elementary steps of electrochemical oxidation of single-crystal planes of Au 2: A chemical and structural basis of oxidation of the (111) plane, J. Electroanal. Chem., 1987, vol. 228, p. 429.
  46. Clavilier, J. and Huong, C.N.V., Etude de l’interface de l’or polycristallin Au contact de solutions aqueuses de perchlorate de potassium et d’acide perchlorique, J. Electroanal. Chem., 1977, vol. 80, p. 101.
  47. Hamelin, A., Study of the (210) face of gold in aqueous solutions, J. Electroanal. Chem., 1982, vol. 138, p. 395.
  48. Hamelin, A., Borkowska, Z., and Stafiej, J., A double layer study of the (210) and (111) faces of gold in aqueous NaBF4 solutions, J. Electroanal. Chem., 1985, vol. 189, p. 85.
  49. Orlik, M. and Galus, Z., Electrochemistry of Gold, in Encyclopedia of Electrochemistry, Wiley-Vch, 2007, p. 839.
  50. Lachenwitzer, A., Li, N., and Lipkowski, J., Determination of the acid dissociation constant for bisulfate adsorbed at the Pt(111) electrode by subtractively normalized interfacial Fourier transform infrared spectroscopy, J. Electroanal. Chem., 2002, vol. 532, p. 85.
  51. Nart, F.C., Iwasita, T., and Weber, M., Vibrational spectroscopy of adsorbed sulfate on Pt(111), Electrochim. Acta, 1994, vol. 39, p. 961.
  52. Cahan, D. and Villullas, H.M., The hanging meniscus rotating disk (HMRD), J. Electroanal. Chem., 1991, vol. 307, p. 263.
  53. Sotto, M., Oxydation anodique de l’or partie I. Conditions expiérimentales. Prétraitement anodique. Evolution de la surface activée, J. Electroanal. Chem., 1976, vol. 69, p. 229.
  54. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., and Stoicoviciu, L., Elementary steps of electrochemical oxidation of single-crystal planes of Au 1: Chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochim. Acta, 1986, vol. 31, p. 1051.
  55. Kolb, D.M. and Schneider, J., Surface reconstruction in electrochemistry: Au(100)-(5x20), Au(111)-(1x23) and Au(110)-(1x2), Electrochim. Acta, 1986, vol. 31, p. 929.
  56. Ferro, C.M., Calandra, A.J., and Arvia, A.J., Voltammetric observations of the various stages related to the formation and electrochemical reduction of the anodic oxide layer on gold in acid aqueous solutions, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 55, p. 291.
  57. Sotto, M., Oxydation anodique de l’or partie III. Étude de la formation du film d’oxyde par la méthode de chronoampérométrie a variation liniéaire de potentiel, J. Electroanal. Chem., 1976, vol. 72, p. 287.
  58. Nieto, F.J.R., Andreasen, G., Martins, M.E., Castez, F., Salvarezza, R.C., and Arvia, A.J., Scanning tunneling microscopy, voltammetry, and X-ray photoelectron spectroscopy study of the early stages of electrochemical faceting of gold(111) in aqueous sulfuric and perchloric acid, J. Phys. Chem. B, 2003, vol. 107, p. 11452.
  59. Pasquale, M.A., Nieto, F.J.R., and Arvia, A.J., In situ scanning tunneling microscopy topography changes of gold(111) in aqueous sulfuric acid produced by electrochemical surface oxidation and reduction and relaxation phenomena, Surf. Rev. Lett., 2008, vol. 15, p. 847.
  60. Zhumaev, U., Rudnev, A.V., Li, J.-F., Kuzume, A., Vu, T.-H., and Wandlowski, T., Electro-oxidation of Au(111) in contact with aqueous electrolytes: New insight from in situ vibration spectroscopy, Electrochim. Acta, 2013, vol. 112, p. 853.
  61. Itaya, K., Sugawara, S., Sashikata, K., and Furuya, N., In situ scanning tunneling microscopy of platinum(111) surface with the observation of monatomic steps, J. Vacuum Sci. Tech. A: Vacuum Surf. Films, 1990, vol. 8, p. 515.
  62. Kondo, T., Morita, J., Hanaoka, K., Takakusagi, S., Tamura, K., Takahasi, M., Mizuki, J.I., and Uosaki, K., Structure of Au(111) and Au(100) single-crystal electrode surfaces at various potentials in sulfuric acid solution determined by in situ surface X-ray scattering, J. Phys. Chem. C, 2007, vol. 111, p. 13197.
  63. Sotto, M., Oxydation anodique de l’or partie II: Étude de la réduction du film d’oxyde formé anodiquement par la méthode de chronoampérométrie variation lineaire de potentiel, J. Electroanal. Chem., 1976, vol. 70, p. 291.
  64. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley and Sons, 2001.
  65. Zhumaev, U.E., Lai, A.S., Pobelov, I.V., Kuzume, A., Rudnev, A.V., and Wandlowski, T., Quantifying perchlorate adsorption on Au(111) electrodes, Electrochim. Acta, 2014, vol. 146, p. 112.
  66. Hribar, B., Southall, N.T., Vlachy, V., and Dill, K.A., How ions affect the structure of water, J. Am. Chem. Soc., 2002, vol. 124, p. 12302.
  67. Garcia-Araez, N., Rodriguez, P., Bakker, H.J., and Koper, M.T.M., Effect of the surface structure of gold electrodes on the coadsorption of water and anions, J. Phys. Chem. C, 2012, vol. 116, p. 4786.
  68. Berná, A., Climent, V., and Feliu, J.M., New understanding of the nature of OH adsorption on Pt(111) electrodes, Electrochem. Commun., 2007, vol. 9, p. 2789.
  69. Vesovic, V., Anastasijevic, N., and Adzic, R.R., Rotating disk electrode: A re-examination of some kinetic criteria with a special reference to oxygen reduction, J. Electroanal. Chem., 1987, vol. 218, p. 53.
  70. Roberts, J.G., Voinov, M.A., Schmidt, A.C., Smirnova, T.I., and Sombers, L.A., The hydroxyl radical is a critical intermediate in the voltammetric detection of hydrogen peroxide, J. Am. Chem. Soc., 2016, vol. 138, p. 2516.
  71. Li, X., Heryadi, D., and Gewirth, A.A., Electroreduction activity of hydrogen peroxide on Pt and Au electrodes, Langmuir, 2005, vol. 21, p. 9251.
  72. Ataka, K., Yotsuyanagi, T., and Osawa, M., Potentialdependent reorientation of water molecules at an electrode/ electrolyte interface studied by surface-enhanced infrared absorption spectroscopy, J. Phys. Chem. B, 1996, vol. 100, p. 10664.
  73. Ataka, K. and Osawa, M., In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions, Langmuir, 1998, vol. 14, p. 951.
  74. Sitta, E. and Feliu, J.M., The role of PtOH on H2O2 interactions with platinum surfaces in an electrochemical environment, ChemElectroChem, 2014, vol. 1, p. 55.