Статья
2022

Development and Investigation of Materials for Microtubular Hydrogen-Selective Membranes


E. V. Shubnikova E. V. Shubnikova , I. A. Mal’bakhova I. A. Mal’bakhova , A. S. Bagishev A. S. Bagishev , E. Yu. Lapushkina E. Yu. Lapushkina , A. P. Nemudry A. P. Nemudry
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070126
Abstract / Full Text

Attention is focused on the development and investigation of materials for microtubular (MT) hydrogen-selective membranes. MT supports based on NiO–Al2O3 and NiO–YSZ composites are prepared; the structure and morphology of MT supports before and after their reduction are studied by the methods of X-ray diffraction and (XRD) and scanning electron microscopy (SEM); the optimal parameters for the reduction are selected. The density of MT supports is studied as well as the microhardness of MT supports based Ni–YSZ. For the first time, the gastight nickel layer is deposited on the MT support surface by the dip-coating method.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    E. V. Shubnikova, I. A. Mal’bakhova, A. S. Bagishev, E. Yu. Lapushkina & A. P. Nemudry

References
  1. Chaubey, R., Sahu, S., James, O.O., and Maity, S., A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources, Renewable Sustainable Energy Rev., 2013, vol. 23, p. 443.
  2. Tao, Z., Yan, L., Qiao, J., Wang, B., Zhang, L., and Zhang, J.A., Review of advanced proton-conducting materials for hydrogen separation, Prog. Mater. Sci., 2015, vol. 74, p. 1.
  3. Adhikari, S. and Fernando, S., Hydrogen membrane separation techniques, Ind. Eng. Chem. Res., 2006, vol. 45, p. 875.
  4. Ockwig, N.W. and Nenoff, T.M., Membranes for hydrogen separation, Chem. Rev., 2007, vol. 107, p. 4078.
  5. Chen, W., Hu, X., Wang, R., and Huang, Y., On the assembling of Pd/ceramic composite membranes for hydrogen separation, Sep. Purif. Technol., 2010, vol. 72, p. 92.
  6. Wang, M., Zhou, Y., Tan, X., Gao, J., and Liu, S., Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures, J. Membr. Sci., 2019, vol. 575, p. 89.
  7. Shubnikova, E.V., Popov, M.P., Chizhik, S.A., Bychkov, S.F., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Eng. J., 2019, vol. 372, p. 251.
  8. Jesswein, J., Uebele, S., Dieterich, A., Keller, S., Hirth, T., and Schiestel, T., Influence of surface properties on the dip coating behavior of hollow fiber membranes, J. Appl. Polymer Sci., 2017, vol. 135, p. 46163.
  9. Kovalev, V.I., Mal’bakhova, I.A., Vorob’ev, A.M., Borisenko, T.A., Popov, M.P., Matvienko, A.A., Titkov, A.I., and Nemudryi, A.P., Microtube membranes for the selective synthesis of oxygen and hydrogen, Russ. J. Electrochem., 2021, vol. 57, p. 1019.
  10. Manukyan, K.V., Avetisyan, A.G., Shuck, C.E., Chatilyan, H.A., Rouvimov, S., Kharatyan, S.L., and Mukasyan, A.S., Nickel oxide reduction by hydrogen: Kinetics and structural transformations, J. Phys. Chem. C, 2015, vol. 119, no. 28, p. 16131.
  11. Soydan, A., Akduman, O., Durgun, A., and Akdeniz, R., Evaluation of the sintering regime on the mechanical and physical properties of the NiO–YSZ anode support tubes, Int. J. Hydrogen Energy, 2017, vol. 42, p. 26933.
  12. Kim, K.D., Oh, C.S., Kil, S.C., Wang, J.P., and Kim, Y.H., Preparation of Ni powders fabricated by various reductive gases, Rev. Adv. Mater. Sci., 2011, vol. 28, p. 162.
  13. Bridges, D., Xu, R., and Hu, A., Microstructure and mechanical properties of Ni nanoparticle-bonded Inconel 718, Mater. Des., 2019, vol. 174, p. 107784.