Development of a Cathodic Material Based on Doped Strontium Cobaltite for Medium Temperature SOFC

O. A. Bragina O. A. Bragina , A. S. Bagishev A. S. Bagishev , N. V. Niftalieva N. V. Niftalieva , B. V. Voloshin B. V. Voloshin , M. P. Popov M. P. Popov , A. P. Nemudryi A. P. Nemudryi
Российский электрохимический журнал
Abstract / Full Text

The partial substitution of tantalum for cobalt in the SrCoO3 – δ structure is shown to result in suppression of the hexagonal phase formation and stabilization of the high-temperature cubic perovskite phase. Using ex situ high-temperature diffraction method, it is shown that perovskite SrCo0.9Ta0.1O3 – δ (SCT10) does not interact with the Ce0.8Gd0.2O2 – δ electrolyte commonly used in medium-temperature solid-oxide fuel cells. The SrCo0.9Ta0.1O3 – δ perovskite is found to exhibit transport characteristics necessary for being used as the cathodic material in medium-temperature solid-oxide fuel cells. A voltammetric characteristic of microtubular fuel cell with the SCT cathode is shown.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128, Novosibirsk, Russia

    O. A. Bragina, A. S. Bagishev, N. V. Niftalieva, B. V. Voloshin, M. P. Popov & A. P. Nemudryi

  1. Steele, B.C. and Heinzel, A., Materials for fuel-cell technologies, Nature, 2001, vol. 414, p. 345.
  2. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.
  3. De la Calle, C., Aguadero, A., Alonso, J.A., and Fernandez-Dıaz, M.T., Correlation between reconstructive phase transitions and transport properties from SrCoO2.5 brownmillerite: A neutron diffraction study, Solid State Sci., 2008, vol. 10, p. 1924.
  4. Belenkaya, I.V., Bragina, O.A., and Nemudry, A.P., Mixed ionic-electronic conducting perovskites as nanostructured ferroelastics, in Advanced Nanomaterials for Catalysis and Energy Synthesis, Characterization and Applications, Sadykov, V.A., Ed, Amsterdam: Elsevier, 2018, chapter 13, p. 515.
  5. Belenkaya, I.V., Matvienko, A.A., and Nemudry, A.P., Phase transitions and microstructure of ferroelastic MIEC oxide SrCo0.8Fe0.2O2.5 doped with highly charged Nb/Ta(V) cations, J. Mater. Chem. A., 2015, vol. 3, p. 23240.
  6. Demont, A., Sayers, R., Tsiamtsouri, M.A., Romani, S., Chater, P.A., Niu, H., Martí-Gastaldo, C., Xu, Z., Deng, Z., Bréard, Y., Thomas, M.F., Claridge, J.B., and Rosseinsky, M.J., Single sublattice endotaxial phase separation driven by charge frustration in a complex oxide, J. Am. Chem. Soc., 2013, vol. 135, p. 10114.
  7. Artimonova, E.V., Savinskaya, O.A., and Nemudry, A.P., Effect of B-site tungsten doping on structure and oxygen permeation properties of SrCo0.8Fe0.2O3 – δ perovskite membranes, J. Eur. Ceram. Soc., 2015, vol. 35, p. 2343.
  8. Wang, F., Nakamura, T., Yashiro, K., Mizusaki, J., and Amezawa, K., Effect of Nb doping on the chemical stability of BSCF-based solid solutions, Solid State Ionics, 2014, vol. 262, p. 719.
  9. Savinskaya, O.A. and Nemudry, A.P., Oxygen permeability and structural features of SrFe1 – xWxO3 – δ membranes, J. Membr. Sci., 2014, vol. 459, p. 45.
  10. Popov, M.P., Starkov, I.A., Bychkov, S.F., and Nemudry, A.P., Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3–δ functional properties by partial substitution of cobalt with tungsten, J. Membr. Sci., 2014, vol. 469, p. 88.
  11. Savinskaya, O.A., Nemudry, A.P., Nadeev, A.N., and Tsybulya, S.V., Synthesis and study of the thermal stability of SrFe1 – xMxO3 – z (M = Mo, W) perovskites, Solid State Ionics, 2008, vol. 179, p. 1076.
  12. Bokov, A.A., Influence of disorder in crystal structure on ferroelectric phase transitions, J. Exp. Theor. Phys., 1997, vol. 84, p. 994.
  13. Tan, X., Liu, Y., and Li, K., Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique, Ind. Eng. Chem. Res., 2005, vol. 44, p. 61.
  14. Schiestel, T., Kilgus, M., Peter, S., Caspary, K.J., Wang, H., and Caro, J., Hollow fibre perovskite membranes for oxygen separation, J. Membr. Sci., 2005, vol. 258, p. 1.
  15. Zhang, K., Ran, R., Ge, L., Shao, Z., Jin, W., and Xu, N., Systematic investigation on new SrCo1 – yNbyO3 – δ ceramic membranes with high oxygen semi-permeability, J. Membr. Sci., 2008, vol. 323, p. 436.
  16. Popov, M.P., Bychkov, S.F., and Nemudry, A.P., Direct AC heating of oxygen transport membranes, Solid State Ionics, 2017, vol. 312, p. 73.
  17. Zeng, P., Shao, Z., Liu, S., and Xu, Z.P., Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3 – δ perovskite, Sep. Purif. Tech., 2009, vol. 67, p. 304.