Статья
2021

Efficient Water Oxidation Catalyzed by a Graphene Oxide/Copper Electrode, Supported on Carbon Cloth


 Behnam Nourmohammadi Khiarak Behnam Nourmohammadi Khiarak , Saeed Imanparast Saeed Imanparast , Mahrokh Mamizadeh Yengejeh Mahrokh Mamizadeh Yengejeh , Ayda Asaadi Zahraei Ayda Asaadi Zahraei , Roya Yaghobi Roya Yaghobi , Mohammad Golmohammad Mohammad Golmohammad
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521100062
Abstract / Full Text

Cost-effectiveness, high performance, and stable electrocatalysts toward oxygen evolution reaction (OER) play a vital role in improving energy technology. In this study, composite materials consisting of electrochemically reduced graphene oxide (ERGO)/sulfur-doped copper oxide supported with carbon cloth (CC) was successfully synthesized as an efficient OER electrocatalyst in NaOH electrolyte. The results of the X-ray diffraction pattern revealed the effect of sulfur on copper as dopant and a transformation from GO to reduced GO through an electrochemical route, respectively. Furthermore, scanning electron microscopy micrographs showed the dendritic structure that had a high surface area to be used for electrochemical applications. Moreover, energy-dispersive X-ray spectroscopy revealed the uniformly-successive distribution of Cu and sulfur throughout the structure that enabled a high rate of diffusion of ions and electrons across the electrode and electrolyte interface. As a matter of fact, the prepared electrocatalyst in this work (ERGO/S-doped Cu/CC) showed a small overpotential of 390 mV to reach a current density of 30 mA cm–2. The ERGO/S-doped Cu/CC demonstrated good durability under conditions of high applied potential of 0.7 V (vs. Ag/AgCl) and robust alkaline solution. The good OER activity of ERGO/S-doped Cu/CC is related to the presence of the graphene and sulfurized copper, enhancing the electrochemical surface area as well as the synergetic effects of sulfurized copper and ERGO sheets. This efficient and cost-effective electrocatalyst suggests that the prepared electrode can be a candidate for an OER electrode.

Author information
  • Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

    Behnam Nourmohammadi Khiarak

  • Biomedical Engineering Department, School of Electrical Engineering, Tabriz University, Tabriz, Iran

    Saeed Imanparast

  • Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran

    Mahrokh Mamizadeh Yengejeh

  • Department of Metallurgy and Materials Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran

    Ayda Asaadi Zahraei

  • Department of Renewable Energy, Niroo Research Institute, Tehran, Iran

    Mohammad Golmohammad

  • Department of Metallurgy and Materials Engineering, Urmia University, Urmia, Iran

    Roya Yaghobi

References
  1. Hu, C., Ma, Q., Hung, S.F., Chen, Z.N., Ou, D., Ren, B., Chen, H.M., Fu, G., and Zheng, N., In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis, Chem, 2017, vol. 3, p. 122.
  2. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev., 2010, vol. 110, p. 6474.
  3. Liang, Y., Li, Y., Wang, H., and Dai, H., Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis, J. Am., Chem. Soc., 2015, vol. 135, p. 2013.
  4. Zhang, G., Li, Y., Zhou, Y., and Yang, F., NiFe layered-double-hydroxide-derived NiO–NiFe2O4/reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting, ChemElectroChem., 2016, vol. 3, p. 1927.
  5. Feng, J., Lv, F., Zhang, W., Li, P., Wang, K., Yang, C., Wang, B., Yang, Y., Zhou, J., Lin, F., and Wang, G.C., Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis, Adv. Mater., 2017, vol. 29, p. 1703.
  6. Pi, Y., Shao, Q., Wang, P., Guo, J., and Huang, X., General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater., 2017, vol. 27, p. 1700886.
  7. Chen, Q., Zhou, Q., Li, T.T., Liu, R., Li, H., Guo, F., and Zheng, Y.Q., Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance, Transit. Met. Chem., 2019, vol. 44, p. 349.
  8. Zhong, Y.Q., Hossain, M.S., Chen, Y., Fan, Q.H., Zhan, S.Z., and Liu, H.Y., A comparative study of electrocatalytic hydrogen evolution by iron complexes of corrole and porphyrin from acetic acid and water, Transit. Met. Chem., 2019, vol. 44, p. 399.
  9. Chen, S., Thind, S.S., and Chen, A., Nanostructured materials for water splitting—state of the art and future needs: a mini-review, Electrochem. Commun., 2016, vol. 63, p. 10.
  10. Wang, C., Moghaddam., R.B., Brett, M.J., and Bergens, S.H., Simple aqueous preparation of high activity and stability NiFe hydrous oxide catalysts for water oxidation, ACS Sustain. Chem. Eng., 2017, vol. 5, p. 1106.
  11. Dionigi, F. and Strasser, P., NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes, Adv. Energy Mater., 2016, vol. 6, p. 1600621.
  12. Bates, M.K., Jia, Q., Doan, H., Liang, W., and Mukerjee, S., Charge-transfer effects in Ni–Fe and Ni–Fe–Co mixed-metal oxides for the alkaline oxygen evolution reaction, ACS Catal., 2015, vol. 6, p. 155.
  13. Khiarak, B.N., Hasanzadeh, M., and Simchi, A., Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks, Inorg. Chem. Commun., 2021, vol. 127, p. 108525.
  14. Chandra, M., Bhunia, K., and Pradhan, D., Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting, Inorg. Chem., 2018, vol. 57, p. 4524.
  15. Hou, Y., Lohe, M.R., Zhang, J., Liu, S., Zhuang, X., and Feng, X., Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting, Energy Environ. Sci., 2016, vol. 9, p. 478.
  16. Xiao, C., Li, Y., Lu, X., and Zhao, C., Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting, Adv. Funct. Mater., 2016, vol. 26, p. 3515.
  17. Zhou, D., Cai, Z., Bi, Y., Tian, W., Luo, M., Zhang, Q., Xie, Q., Wang, J., Li, Y., Kuang, Y., and Duan, X., Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets, Nano Res., 2018, vol. 11, p. 1358.
  18. Khiarak, B.N., Hasanzadeh, M., Mojaddami, M., Far, H.S., and Simchi, A., In situ synthesis of quasi-needle-like bimetallic organic frameworks on highly porous graphene scaffolds for efficient electrocatalytic water oxidation, Chem. Commun., 2020, vol. 56, p. 3135.
  19. Hwang, D. W., Lee, S., Seo, M., and Chung, T.D., Recent advances in electrochemical non-enzymatic glucose sensors—a review, Anal. Chim. Acta, 2018, vol. 1033, p. 1.
  20. Zheng, Z., Lin, L., Mo, S., Ou, D., Tao, J., Qin, R., Fang, X., and Zheng, N., Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting, Small, 2018, vol. 14, p. 1800759.
  21. Bikkarolla, S.K. and Papakonstantinou, P., CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst, J. Power Sources, 2015, vol. 281, p. 243.
  22. Feng, Y., Zhang, H., Fang, L., Mu, Y., and Wang, Y., Uniquely mono-dispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction, ACS Catal., 2016, vol. 7, p. 4477.
  23. Tang, D., Liu, J., Wu, X., Liu, R., Han, X., Han, Y., Huang, H., Liu, Y., and Kang, Z., Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7918.
  24. Hu, Y., Zhu, J., Yang, H., Lyu, S., and Chen, J., Anti-corrosion engineering of Cu2S/FeOOH hybrid nanosheets as superior bifunctional electrocatalysts for overall water splitting, Inorg. Chem. Commun., 2020, vol. 117, p. 107971.
  25. Khiarak, B.N., Golmohammad, M., Maleki, M.S., and Simchi, A., Facile synthesis and self-assembling of transition metal phosphide nanosheets to microspheres as a high-performance electrocatalyst for full water splitting, J. Alloy. Compd., 2021, vol. 875, p. 160049.
  26. Zhang, B., Li, C., Yang, G., Huang, K., Wu, J., Li, Z., Cao, X., Peng, D., Hao, S., and Huang, Y., Nanostructured CuO/C hollow shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction, ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 23807.
  27. Jahan, M., Liu, Z., and Loh, K.P., A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR, Adv. Funct. Mater., 2013, vol. 23, p. 5363.
  28. Eugenio, M.F., Silva, S., Carmezim, T.M., Duarte, M.J., and Montemor, R.G., Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors, J. Appl. Electrochem., 2014, vol. 44, p. 455.
  29. Toh, S.Y., Loh, K.S., Kamarudin, S.K., and Daud, W.R.W., Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation, Chem. Eng. J., 2014, vol. 251, p. 422.
  30. Gao, M., Xu, Y., Wang, X., Sang, Y., and Wang, S., Analysis of electrochemical reduction process of graphene oxide and its electrochemical behavior, Electroanalysis, 2016, vol. 28, p. 1377.
  31. Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., and Xia, X.H., A green approach to the synthesis of graphene nanosheets, ACS Nano, 2009, vol. 3, p. 2653.
  32. Xiong, R.T., Gang, Pal, Serrano, U., Ucer, J.G., and Williams, K.B., Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Phys. Status Solidi C, 2006, vol. 3, p. 3577.
  33. Heinke, H., Kirchner, V., Einfeldt, S., and Hommel, D., X-ray diffraction analysis of the defect structure in epitaxial GaN, Appl. Phys. Lett., 2000, vol. 77, p. 2145.
  34. Zhang, B., Wang, L., Cao, Z., Kozlov, S.M., de Arquer, F.P.G., Dinh, C.T., Li, J., Wang, Z., Zheng, X., Zhang, L., and Wen, Y., High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics, Nat. Catal., 2020, vol. 3, no. 12, pp. 1–8.
  35. Oliver-Tolentino, M., Vazquez-Samperio, J., Tufino-Velazquez, M., Flores-Moreno, J., Lartundo-Rojas, L., and Gonzalez-Huerta, R. de G., Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials, J. Appl. Electrochem., 2018, vol. 48, p. 947.
  36. Hui, L., Xue, Y., Huang, B., Yu, H., Zhang, C., Zhang, D., Jia, D., Zhao, Y., Li, Y., Liu, H., and Li, Y., Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun., 2018, vol. 8, p. 5309.
  37. Long, X., Li, J., Xiao, S., Yan, K., Wang, Z., Chen, H., and Yang, S., A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction, Angew. Chem. Int. Ed., 2014, vol. 53, p. 7584.
  38. Kim, J.-H., Youn, D.H., Kawashima, K., Lin, J., Lim, H., and Mullins, C.B., An active nanoporous Ni (Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media, Appl. Catal. B: Environ., 2018, vol. 225, p. 1.
  39. Gao, X., Zhang, H., Li, Q., Yu, X., Hong, Z., Zhang, X., Liang, C., and Lin, Z., Hierarchical NiCo2O4 hllow microcuboids as bifunctional electrocatalysts for overall water-splitting, Angew. Chem. Int. Ed., 2016, vol. 55, p. 6290.
  40. Liu, H., Liu, D., Gu, M., Zhao, Z., Chen, D., Cui, P., Xu, L., and Yang, J., Highly purified dicobalt phosphide nanodendrites on exfoliated graphene: in situ synthesis and as robust bifunctional electrocatalysts for overall water splitting, Mater. Today Energy, 2019, vol. 14, p. 100336.
  41. Ledendecker, M., Krick Calderon, S., Papp, C., Steinruck, H.P., Antonietti, M., and Shalom, M., The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting, Angew. Chem. Int. Ed., 2015, vol. 54, p. 12361.
  42. Yu, L., Zhou, H., Sun, J., Qin, F., Luo, D., Xie, L., Yu, F., Bao, J., Li, Y., Yu, Y., and Chen, S., Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting, Nano Energy, 2017, vol. 41, p. 327.
  43. Kuang, M., Han, P., Wang, Q., Li, J., and Zheng, G., CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting, Adv. Funct. Mater., 2016, vol. 26, p. 8555.
  44. Guiet, A., Huan, T.N., Payen, C., Porcher, F., Mougel, V., Fontecave, M., and Corbel, G., Copper-substituted NiTiO3 ilmenite-type materials for oxygen evolution reaction, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 31038.
  45. Chen, H., Gao, Y., Ye, L., Yao, Y., Chen, X., Wei, Y., and Sun, L., A Cu2Se–Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction, Chem. Commun., 2018, vol. 54, p. 4979.
  46. Hu, W., Zhong, H., Liang, W., and Chen, S., Ir-surface enriched porous Ir–Co oxide hierarchical architecture for high performance water oxidation in acidic media, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12729.
  47. Zhu, W., Zhu, G., Hu, J., Zhu, Y., Chen, H., Yao, C., Pi, Z., Zhu, S., and Li, E., Poorly crystallized nickel hydroxide carbonate loading with Fe3+ ions as improved electrocatalysts for oxygen evolution, Inorg. Chem., 2020, vol. 114, p. 107851.
  48. Wang, W., Jiang, Y., Hu, Y., Liu, Y., Li, J., and Chen, S., Top-open hollow nanocubes of Ni-doped Cu oxides on Ni foam: scalable oxygen evolution electrode via galvanic displacement and face-selective etching, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 11600.
  49. Du, J., Chen, Z., Ye, S., Wiley, B.J., and Meyer, T.J., Copper as a robust and transparent electrocatalyst for water oxidation, Angew. Chem. Int. Ed., 2015, vol. 54, p. 2073.
  50. Joya, K.S. and de Groot, H.J.M., Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation, ACS Catal., 2016, vol. 6, p. 1768.
  51. Chen, R., Wang, H.Y., Miao, J., Yang, H., and Liu, B., A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core–shell nanowires, Nano Energy, 2015, vol. 11, p. 333.
  52. McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 16977.
  53. Hou, C., Fu, W., and Chen, Y., Self-supported Cu-based nanowire arrays as noble-metal-free electrocatalysts for oxygen evolution, ChemSusChem., 2016, vol. 9, p. 2069.
  54. Candelaria, S.L., Bedford, N.M., Woehl, T.J., Rentz, N.S., Showalter, A.R., Pylypenko, S., Bunker, B.A., Lee, S., Reinhart, B., Ren, Y., and Ertem, S.P., Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions, ACS Catal., 2017, vol. 7, p. 365.
  55. Wu, J.-X., He, C.-T., Li, G.-R., and Zhang, J.-P., An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction, J. Mater. Chem., 2018, vol. 6, p. 19176.
  56. Wang, H.Y., Hsu, Y.Y., Chen, R., Chan, T.S., Chen, H.M., and Liu, B., Ni3+ induced formation of active NiOOH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction, Adv. Energy Mater., 2015, vol. 5, p. 1500091.
  57. Li, Y., Hasin, P., and Wu, Y., NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution, Adv. Mater., 2010, vol. 22, p. 1926.
  58. Tian, T., Zheng, M., Lin, J., Meng, X., and Ding, Y., Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts, Chem. Commun., 2019, vol. 55, p. 1044.
  59. Zhu, C., Wen, D., Leubner, S., Oschatz, M., Liu, W., Holzschuh, M., Simon, F., Kaskel, S., and Eychmuller, A., Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction, Chem. Commun., 2015, vol. 51, p. 7851.
  60. Yeo, B.S. and Bell, A.T., Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen, J. Am. Chem. Soc., 2011, vol. 133, p. 5587.
  61. Pan, Y., Lin, Y., and Liu, C., Metal doping effect of the M–Co2P/nitrogen-doped carbon nanotubes (M= Fe, Ni, Cu) hydrogen evolution hybrid catalysts, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 13890.
  62. Yu, L., Mishra, I.K., Xie, Y., Zhou, H., Sun, J., Zhou, J., Ni, Y., Luo, D., Yu, F., Yu, Y., and Chen, S., Ternary Ni2(1 – x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density, Nano Energy, 2018, vol. 53, p. 492.
  63. Pu, J., Wang, T., Wang, H., Tong, Y., Lu, C., Kong, W., and Wang, Z., Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors, ChemPlusChem., 2014, vol. 79, p. 577.
  64. Castagna, R.M., Sieben, J.M., Alvarez, A.E., Sanchez, M.D., and Duarte, M.M., Carbon supported PtNiCu nanostructured particles for the electro-oxidation of ethanol in acid environment, Mater. Today Energy, 2020, vol. 15, p. 100366.
  65. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2018.