Examples



mdbootstrap.com



 
Статья
2016

Adsorption of complex silver cyanides on Ag(111). Quantum chemical consideration


N. A. RogozhnikovN. A. Rogozhnikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516010080
Abstract / Full Text

The interaction of AgCN molecules and Ag(CN) 2 , Ag(CN) 2−3 , Ag(CN) 3−4 ions with the silver surface is studied based on the cluster model of the metal surface by quantum chemistry methods. The geometrical and energy parameters of the interaction of these species with the metal surface are assessed. As regards the strength of their chemical bond with the surface, these compounds form the following series: Ag(CN) 2 < Ag(CN) 2−3 < AgCN < Ag(CN) 3−4 . The surface activity of silver-containing species is compared with regard to the solvent effect. It is found that Ag(CN) 2 and Ag(CN) 2−3 anions exhibit close adsorbabilities on silver. Molecules AgCN are not accumulated on the surface because of their very low content in solution. The adsorption of Ag(CN) 3−4 is hindered due to a considerable value of degradation energy of this three-charged ion. In the adsorbed state, the ions Ag(CN) 2 and Ag(CN) 2−3 represent stable compounds displaying no surface dissociation to yield compounds with the smaller coordination numbers.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, ul. Kutateladze 18, Novosibirsk, 630128, RussiaN. A. Rogozhnikov
References
  1. Shapnik, M.S. and Man’ko, L.Yu., Elektrokhimiya, 1994, vol. 30, p. 1234.
  2. Stepanov, N.F., Kvantovaya mekhanika i kvantovaya khimiya (Quantum Mechanics and Quantum Chemistry), Moscow: Mir, 2001.
  3. Vetter, K.J., Elektrochemische Kinetics, Berlin: Springer-Verlag, 1961 (translated into Russian).
  4. Vishomirskis, R.M., Kinetika elektroosazhdeniya metallov iz kompleksnykh elektrolitov (Kinetics of Metal Electrodeposition from Complex Electrolytes), Moscow: Nauka, 1969.
  5. Vielstich, W. and Gerischer, H., Z. Phys. Chem. (N.F.), 1955, vol. 4, p. 10.
  6. Nechaev, E.A. and Bek, R.Yu., Elektrokhimiya, 1966, vol. 2, p. 150.
  7. Nechaev, E.A., Bek, R.Yu., and Kudryavtsev, N.T., Elektrokhimiya, 1968, vol. 4, p. 545.
  8. Baltruschat, H. and Vielstich, W., J. Electroanal. Chem., 1983, vol. 154, p. 141.
  9. Baltrunas, G., Drunga, V., and Svedas, D., Electrochim. Acta, 2003, vol. 48, p. 3659.
  10. Baltrunas, G., J. Electroanal. Chem., 1994, vol. 369, p. 93.
  11. Sánchez, P., Chainet, E., Nguen, B., Ozil, P., and Meas, Y., J. Electrochem. Soc., 1996, vol. 143, p. 2799.
  12. Bek, R.Yu. and Rogozhnikov, N., A, J. Electroanal. Chem., 1998, vol. 447, p. 109.
  13. Ashiru, O.A. and Farr, J.P.G., J. Electrochem. Soc., 1995, vol. 142, p. 3729.
  14. Bozzini, B., De Gaudenzi, G.P., and Mele, C., J. Electroanal. Chem., 2004, vol. 563, p. 133.
  15. Bozzini, B., De Gaudenzi, G.P., and Mele, C., J. Electroanal. Chem., 2004, vol. 570, p. 29.
  16. Laufer, G., Huneke, J.T., and Schaaf, T.F., Chem. Phys. Lett., 1981, vol. 82, p. 571.
  17. Von Raben, K.U., Chang, R.K., Laube, B.L., and Barber, P.W., J. Phys. Chem., 1984, vol. 88, p. 5290.
  18. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.
  19. Koch, W., Holthausen, M.C.A., Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001, p. 293.
  20. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
  21. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623.
  22. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 299.
  23. McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72, p. 5639.
  24. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650.
  25. Löwdin, P.-O., Adv. Quantum Chem., 1970, vol. 5, p. 185.
  26. Titmuss, S., Wander, A., and King, D.A., Chem. Rev., 1996, vol. 96, p. 1291.
  27. Patnaik, P., Handbook of Inorganic Chemicals, New York: McGraw-Hill, 2002, p. 321.
  28. Greenwood, N.N. and Earnshaw, A., Chemistry of the Elements, Oxford: Butterworth-Heinermann, 1998, vol. 2 (translated into Russian).
  29. Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102, p. 1995.
  30. Cossi, M., Rega, N., Scalmani, G., and Barone, V., J. Comput. Chem., 2003, vol. 24, p. 669.
  31. Barone, V., Cossi, M., and Tomasi, J., J. Chem. Phys., 1997, vol. 107, p. 3210.
  32. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, p. 553.
  33. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999, p. 84.
  34. Zsaco, J. and Petri, E., Rev. Roum. Chim., 1965, vol. 10, p. 571.
  35. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., J. Phys. Chem., 1996, vol. 100, p. 16385.
  36. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., J. Phys. Chem. A, 2009, vol. 113, p. 6404.
  37. Nazmutdinov, R.R., Shapnik, M.S., and Man’ko, L.Yu., Russ. J. Electrochem., 1996, vol. 32, p. 1017.
  38. Kuznetsov, An.M., Maslii, A.N., and Shapnik, M.S., Russ. J. Electrochem., 2002, vol. 38, p. 123.
  39. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1976 (translated into Russian).
  40. Kuznetsov, An.M., Maslii, A.N., and Shapnik, M.S., Russ. J. Electrochem., 2000, vol. 36, p. 1309.
  41. Rogozhnikov, N.A. and Beck, R.Yu., J. Electroanal. Chem., 1997, vol. 434, p. 19.
  42. Stein, P. and Geyer, R., Z. Chem., 1978, vol. 18, p. 71.
  43. Belen’kii, M.A. and Ivanov, A.F., Elektroosazhdenie metallicheskikh pokrytii (Electrodeposition of Metal Coatings), Moscow: Metallurgiya, 1985.