Examples



mdbootstrap.com



 
Статья
2021

Phase separation in the Bi2O3-SiO2 system. Effect of cooling conditions on the phase composition and microstructure of solidification products


T. V. BermeshevT. V. Bermeshev, V. P. ZherebV. P. Zhereb, R. N. Tas-OolR. N. Tas-Ool, E. V. MazurovaE. V. Mazurova, S. I. MetelitsaS. I. Metelitsa
Российский химический вестник
https://doi.org/10.1007/s11172-021-3240-1
Abstract / Full Text

The effect of heat treatment conditions (temperature and time of isothermal holding, temperature of the start of cooling and cooling conditions) of a melt containing 50 mol.% Bi2O3 and 50 mol.% SiO2 on the phase composition and macro- and microstructure of solidification products was studied. The temperatures and ranges of macroscopic phase separation of the melt were determined. Using physicochemical methods (powder X-ray diffraction, optical and scanning electron microscopy, and atomic absorption analysis), it was established that depending on the melt cooling conditions, solidification gives crystals of metastable bismuth silicate Bi2SiO5, or a mixture of crystalline phases and glass, or glass. The crucial influence of the holding temperature and time and the melt cooling rate on the crystallization of metastable Bi2SiO5 and formation of crystals of stable phases was demonstrated.

Author information
  • Siberian Federal University, 79 prosp. Svobodny, 660041, Krasnoyarsk, Russian FederationT. V. Bermeshev, V. P. Zhereb & R. N. Tas-Ool
  • M. F. Reshetnev Siberian State University of Science and Technology, 31 prosp. im. gazety “Krasnoyarsky rabochy”, 660037, Krasnoyarsk, Russian FederationV. P. Zhereb
  • Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Build. 24, 50 Akademgorodok, 660036, Krasnoyarsk, Russian FederationE. V. Mazurova
  • Scientific Engineering Research Center “Kristall”, Siberian Federal University, 79 prosp. Svobodny, 660041, Krasnoyarsk, Russian FederationS. I. Metelitsa
References
  1. B. Aurivillius, C. I. Lindblom, P. Stenson, Acta Chem. Scand., 1964, 18, 1556–1557; DOI: https://doi.org/10.3891/acta.chem.scand.18-1555.
  2. J. Ketterer, V. Kramer, Neues Jahrb. Mineral., Monatsh., 1986, 11, 13–18.
  3. A. V. Firsov, I. E. Skorokhodov, A. V. Astaf’ev, A. A. Bush, S. Yu. Stefanovich, Yu. I. Venevtsev, Kristallografiya [Crystallography], 1984, 29, 509–512 (in Russian).
  4. Yu. N. Venevtsev, A. A. Bush, E. D. Politova, S. Yu. Stefanovich, A. V. Firsov, I. N. Danilenko, L. I. Kosse, A. V. Astaf’iev, N. E. Skorohodov, A. Yu. Schashkov, B. S. Medvedev, A. E. Mirkin, S. I. Reiman, N. V. Rannev, V. A. Efremov, V. K. Trunov, Ferroelectrics, 1985, 63, 217–226; DOI: https://doi.org/10.1080/00150198508221403.
  5. Th. Maeder, Int. Mater. Rev., 2012, 58, 3–40; DOI: https://doi.org/10.1179/1743280412Y.0000000010.
  6. E. N. Voskresenskaya, L. I. Kurteeva, V. P. Zhereb, A. G. Anshits, Catalysis Today, 1992, 13, 599–602.
  7. V. P. Zhereb, E. N. Voskresenskaya, E. I. Kurteeva, V. F. Kargin, A. G. Anshits, React. Kinet. Catal. Lett., 1993, 50, No. 1–2, 327–332.
  8. W. Wei, J. Xie, S. Meng, X. Lü, Z. Yan, J. Zhu, H. Cui, J. Mater. Res., 2013, 28, 1658–1668; DOI: https://doi.org/10.1557/jmr.2013.65.
  9. X. J. Dai, Y. S. Luo, S. Y. Fu, W. Q. Chen, Y. Lu., Solid State Sci., 2010, 12, 637–642; DOI: https://doi.org/10.1016/j.solidstatesciences.2010.01.024.
  10. L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Appl. Catal. B, 2010, 100, 97–101; DOI: https://doi.org/10.1016/j.apcatb.2010.07.018.
  11. J. A. Topping, N. Cameron, M. K. Murthy, J. Am. Ceramic Soc., 1974, 57, 519–521; DOI: https://doi.org/10.1111/j.1151-2916.1974.tb10800.x.
  12. G. Gattow, H. Fricke, Z. Anorg., Allg. Chemie, 1963, 324, No. 5–6, 287–296; DOI: https://doi.org/10.1002/zaac.19633240509.
  13. E. I. Speranskaya, V. M. Skorikov, G. M. Safronov, G. D. Mitkina, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1968, 4, 1374–1375 (in Russian).
  14. Yu. F. Kargin, V. P. Zhereb, V. M. Skorikov, Zhurn. Neorgan. Khim. [J. Inorg. Chem.], 1991, 36, 2611–2616 (in Russian).
  15. Y. Fei, S. Fan, J. Inorg. Mater, 1997, 12, 469–476 (in Chinese).
  16. Y. T. Fei, S. J. Fan, R. Y. Sun, J. Y. Xu, M. Ishii, J. Mat. Sci. Lett., 2000, 19, 893–895; DOI: https://doi.org/10.1023/A:1006701901976.
  17. I. V. Tananaev, V. M. Skorikov, Yu. F. Kargin, V. P. Zhereb, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1978, 14, 2024–2028 (in Russian).
  18. V. P. Zhereb, Yu. F. Kargin, V. M. Skorikov, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1978, 14, 2028–2032.
  19. V. P. Zhereb, V. M. Skorikov, Inorg. Mater., 2003, 39, 121–145; DOI: https://doi.org/10.1023/B:INMA.0000008890.41755.90.
  20. V. P. Zhereb, Ph.D Thesis, Institute of General and Inorganic Chemistry, USSR Academy of Sciences, Moscow, 1980, p. 22 (in Russian).
  21. V. P. Zhereb, T. V. Bermeshev, Yu. F. Kargin, E. V. Mazurova, V. M. Denisov, Russ. J. Inorg. Mater., 2019, 55, 737–747; DOI: https://doi.org/10.1134/S0020168519060165.
  22. H. W. Guo, X. F. Wang, D. N. Gao, Sci. Sintering, 2011, 43, 353–362; DOI: https://doi.org/10.2298/SOS1103353G.
  23. H. Guo, in Glass Sci. Technol., Ed. V. M. Sglavo, IntechOpen, London, 2018, p. 61–76.
  24. Inventor’s Certificate 2115626 KA, Byul. izobret. [Invention Bull.], 1996.
  25. Y. Ke, W. Huang, S. K. Thatikonda, R. Chen, C. Yao, N. Qin, D. Bao, Curr. Appl. Phys., 2020, 20, 751–754; DOI: https://doi.org/10.1016/j.cap.2020.03.010.
  26. G. Tanimu, A. M. Aitani, S. Asaoka, H. Alasiri, Mol. Catal., 2020, 488, 110893; DOI: https://doi.org/10.1016/j.mcat.2020.110893.
  27. D. Sarkar, S. Ganguli, A. E. Praveen, V. Mahalingam, Mater. Adv., 2020, 1, 2019–2032; DOI: https://doi.org/10.1039/D0MA00363H.
  28. T. Haldar, U. Kumar, B. C. Yadav, V. V. Ravi Kanth Kumar, Ceram. Intern., 2021, 47, 1389–1398; DOI: https://doi.org/10.1016/j.ceramint.2020.08.262.
  29. H. R. Mahmoud, Fuel, 2020, 280, 118596; DOI: https://doi.org/10.1016/j.fuel.2020.118596.
  30. X. Guan, X. Zhang, C. Zhang, R. Li, Y. Wang, C. Fan, Composites Commun., 2020, 280, 100366; DOI: https://doi.org/10.1016/j.fuel.2020.118596.
  31. L. Dou, Y. Xiang, J. Zhong, J. Li, S. Huang, Mater. Lett., 2020, 261, 127117; DOI: https://doi.org/10.1016/j.matlet.2019.127117.
  32. A. Al-Keisy, L. Ren, T. Zheng, X. Xu, M. Higgins, W. Hao, Y. Du, Dalton Trans., 2017, 46, 15582–15588; DOI: https://doi.org/10.1039/C7DT03193A.
  33. G. Cheng, J. Xiong, H. Yang, Z. Lu, R. Chen, Mater. Lett., 2012, 77, 25–28; DOI: https://doi.org/10.1016/j.matlet.2012.02.127.
  34. C. Zou, M. Liang, Z. Yang, X. Zhou, Y. Yang, S. Yang, Nanotechnology, 2020, 31, 345604; DOI: https://doi.org/10.1088/1361-6528/ab912f.
  35. L. Dou, X. Jin, J. Chen, J. Zhong, J. Li, Y. Zeng, R. Duan, Appl. Surface Sci., 2020, 527, 146775; DOI: https://doi.org/10.1016/j.apsusc.2020.146775.
  36. Y. Wu, M. Li, X. Wang, L. Wang, H. Gao, Mater. Manufact. Proces., 2017, 32, 480–483; DOI: https://doi.org/10.1080/10426914.2016.1221081.
  37. J.-Q. Lu, X.-F. Wang, Y.-T. Wu, Y.-Q. Xu, Mater. Lett., 2012, 74, 200–202; DOI: https://doi.org/10.1016/j.matlet.2012.01.111.
  38. H.-T. Jiang, X.-F. Wang, L.-L. Wang, C.-L. Yu, J.-E. Mu, Mater. Manufact. Proces., 2013, 28, 336–340; DOI: https://doi.org/10.1080/10426914.2012.677906.
  39. G. Golubovskaya, E. D. Fakhrutdinova, V. A. Svetlichnyi, Proc. Int. Conf. Proceedings of VI International Scientific Schoolconference for Young Scientists “Catalysis: from Science to Industry” (Tomsk October 6–10, 2020), Tomsk, 2020, 50.
  40. D. Liu, J. Wang, M. Zhang, Y. Liu, Y. Zhu, Nanoscale, 2014, 6, 15222–15227; DOI: https://doi.org/10.1039/C4NR05058D.
  41. D. Liu, W. Yao, J. Wang, Y. Liu, M. Zhang, Y. Zhu, Appl. Catal. B: Environ., 2015, 172, 100–107; DOI: https://doi.org/10.1016/j.apcatb.2015.01.037.
  42. M. Yamaguchi, T. Nagatomo, Y. Masuda, Jpn. J. Appl. Phys., 2001, 40, 5559–5563.
  43. M. Yamaguchi, K. Hiraki, T. Nagatomo, Y. Masuda, Jpn. J. Appl. Phys., 2000, 39, 5512–5516.
  44. Yu. Belik, T. Kharlamova, A. Vodyankin, V. Svetlichnyi, O. Vodyankina, Ceram. Inter., 2020, 46, 10797–10806; DOI: https://doi.org/10.1016/j.ceramint.2020.01.090.
  45. X. Feng, X. Qi, J. Li, L. Yang, M. Qiu, J. Yin, F. Lu, J. Zhong, Appl. Surface Sci., 2011, 257, 5571–5575; DOI: https://doi.org/10.1016/j.apsusc.2011.01.045.
  46. V. V. Borisova, E. V. Mironova, E. S. Bragina, I. A. Bondar’, Evraziiskii Soyuz Uchenykh [Eurasian Union of Scientists], 2017, 12, 45, 50–55 (in Russian).