Thermodynamic Study of Cu2GeS3 and Cu2–xAg x GeS3 Solid Solutions by the EMF Method with a Cu4RbCl3I2 Solid Electrolyte

I. J. AlverdievI. J. Alverdiev, V. A. AbbasovaV. A. Abbasova, Yu. A. YusibovYu. A. Yusibov, D. B. TagievD. B. Tagiev, M. B. BabanlyM. B. Babanly
Российский электрохимический журнал
Abstract / Full Text

The Cu2GeS3–Ag2GeS3 system was studied by the EMF method with a Cu4RbCl3I2 solid electrolyte in the temperature range 300–380 K. The formation of wide regions of solid solutions from the starting compounds in this system was confirmed. The partial thermodynamic functions (ΔG, ΔH, ΔS) of copper in alloys were calculated from the equations of the temperature dependences of EMF. The current-forming reactions were determined based on the schematic diagram of solid-phase equilibria in the Cu–Ag–Ge–S system and used to calculate the standard thermodynamic functions of formation and the standard entropies of the compound Cu2GeS3 and solid solutions Cu2–xAg x GeS3 (х = 0.2, 0.4, 0.6, 1.6, and 1.8) and the thermodynamic functions of mixing of the latter from ternary compounds.

Author information
  • Ganja State University, Ganja, AZ, 2000, AzerbaijanI. J. Alverdiev, V. A. Abbasova & Yu. A. Yusibov
  • Nagiev Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, AZ, 1143, AzerbaijanD. B. Tagiev & M. B. Babanly
  1. West, A.R., Solid State Chemistry and its Applications, New York: Wiley, 2014.
  2. Ivanov-Shits, A.K. and Murin, I.V., Solid-State Ionics, vol. 1., St. Petersburg: Sankt-Peterb. Univ., 2000.
  3. Solid Electrolytes, Hagenmüller, P. and Van Goll, W., Eds., New York: Academic Press, 1978.
  4. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Research Methods in Thermodynamics of Metallic Systems), Moscow: Akademkniga, 2003
  5. Babanly, M.B. and Yusibov, Yu.A., Elektrokhimicheskie metody v termodinamike neorganicheskikh sistem (Electrochemical Methods in Thermodynamics of Inorganic Systems), Baku: Bakin. Gos. Univ., 2011
  6. Babanly, M.B., Yusibov, Yu.A., and Babanly, N.B., The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides, Electromotive Force and Measurement in Several Systems, Kara, S., Ed., InTech, 2011, p. 57.
  7. Moroz, M.V. and Prokhorenko, M.V., Russ. J. Electrochem.,, 2015, vol. 51, no. 7, p. 697.
  8. Aspiala, M., Tesfaye, F., and Taskinen, P., J. Chem. Thermodyn.,, 2016, vol. 98, p. 361.
  9. Babanly, M.B., Mashadiyeva, L.F., Veliyeva, G.M., Imamaliyeva, S.Z., and Shykhyev, Yu.M., Russ. J. Electrochem.,, 2009, vol. 45, no. 4, p. 399.
  10. Babanly, N.B., Yusibov, Yu.A., Mirzoeva, R.J., Shykhyev, Yu.M., and Babanly, M.B., Russ. J. Electrochem.,, 2009, vol. 45, no. 4, p. 405.
  11. Babanly, N.B., Aliev, Z.S., Yusibov, Yu.A., and Babanly, M.B., Russ. J. Electrochem.,, 2010, vol. 46, no. 3, p. 354.
  12. Babanly, N.B., Salimov, Z.E., Akhmedov, M.M., and Babanly, M.B., Russ. J. Electrochem.,, 2012, vol. 48, no. 1, p. 68.
  13. Babanly, M.B., Gasanova, Z.T., Mashadieva, L.F., Zlomanov, V.P., and Yusibov, Yu.A., Inorg. Mater.,, 2012, vol. 48, no. 3, p. 276.
  14. Applications of Chalcogenides: S, Se, and Te, Gurinder Kaur Ahluwalia, Ed., Springer, 2016.
  15. Babanly, M.B., Yusibov, Yu.A., and Abishev, V.T., Trekhkomponentnye khal’kogenidy na osnove medi i serebra (Three-Component Chalcogenides Based on Copper and Silver), Baku: Bakin. Gos. Univ., 1993
  16. Berger, L.I., Semiconductor Materials, CRC Press, 1996.
  17. Kuhs, W., Nitsche, R., and Scheunemann, K., Mater. Res. Bull.,, 1979, vol. 14, p. 241.
  18. Jin, X., Zhang, L., Jiang, G., Liu, W., and Zhu, C., Sol. Energy Mater. Sol. Cells,, 2017, vol. 160, p. 319.
  19. Onoda, M., Wada, H., Sato, A., and Ishii, M., J. Alloys Compd.,, 2004, vol. 383, p. 113.
  20. Bagheri, S.M., Alverdiyev, I.J., Aliev, Z.S., Yusibov, Yu.A., and Babanly, M.B., J. Alloys Compd.,, 2015, vol. 625, p. 131.
  21. Bagheri, S.M., Imamalieva, S.Z., and Babanly, M.B., Int. J. Fundam. Appl. Res., 2014, no. 9, p. 54.
  22. Abbasova, V.A., Alverdiev, I.J., Yusibov, Yu.A., and Babanly, M.B., Int. J. Fundam. Appl. Res., 2016, no. 12, p. 345.
  23. Khanafer, M., Rivet, J., and Flahaut, J., Bull. Soc. Chim. Fr., 1973, no. 3, p. 859.
  24. Emsley, J., The Elements, New York: Oxford University Press, 1998.
  25. Dörffel, K., Statistika v analiticheskoi khimii (Statistics in Analytical Chemistry), Moscow: Mir, 1994
  26. Kornilov, A.N., Stepina, L.B., and Sokolov, V.A., Zh. Fiz. Khim.,, 1972, vol. 46, no. 11, p. 2974.
  27. Karapet’yants, M.Kh., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Librocom, 2013
  28. Baza dannykh termicheskikh konstant veshchestv (Database of the Thermal Constants of Substances), Jungman, V.S., Ed., 2006. http://www.chem.msu.su/cgibin/ tkv.
  29. Kubaschewski, O., Alcock, C.B., and Spenser, P.J., Materials Thermochemistry, Oxford: Pergamon, 1993.
  30. Novoselova, A.V. and Pashinkin, A.S., Davlenie para letuchikh khal’kogenidov metallov (The Vapor Pressure of Volatile Metal Chalcogenides), Moscow: Nauka, 1978
  31. O’Hare, P.A.G. and Curtiss, L.A., J. Chem. Thermodyn.,, 1995, vol. 27, p. 643.