Статья
2018

A New Approach in the Theory of Spatially-Restricted Nonlocal Dielectric Media


M. A. Vorotyntsev M. A. Vorotyntsev , A. A. Rubashkin A. A. Rubashkin , A. E. Antipov A. E. Antipov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130505
Abstract / Full Text

A new method for the calculation of electric field distributions in the systems with spatiallyrestricted regions filled with polar media with nonlocal dielectric characteristics is proposed. The presence of regions with different dielectric properties in the system (as exemplified by the presence of an ion-filled cavity in which there is no polar medium surrounding the ion) is automatically taken into account within this procedure. The field distribution inside a uniform and isotropic nonlocal dielectric medium outside the spherical cavity containing a spherically symmetric charge distribution (the system represents the ion inside the polar solvent) has illustrated this new approach. In contrast to the previously suggested approach (dielectric approximation), where calculations of this characteristic required complex numerical and analytical calculations, the new method requires only single integration in order to determine the distribution of the potential of the electric field inside the polar medium with an arbitrary law of spatial dispersion of its dielectric permittivity (which can be specified eithter analytically or numerically).

Author information
  • Department of Chemistry, Moscow State University, Moscow, 119992, Russia

    M. A. Vorotyntsev & A. E. Antipov

  • Mendeleev Russian University of Chemical Engineering, Moscow, 125047, Russia

    M. A. Vorotyntsev & A. E. Antipov

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia

    M. A. Vorotyntsev

  • ICMUB, UMR 6302 CNRS, Université de Bourgogne, Dijon, France

    M. A. Vorotyntsev

  • Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia

    A. A. Rubashkin

References
  1. Dogonadze, R.R. and Kornyshev, A.A., Polar solvent structure in the theory of ionic salvation, J. Chem. Soc., Faraday Trans. 2, 1974, vol. 70, p. 1121.
  2. Kornyshev, A.A., Nonlocal screening of ions in a structurized polar liquid—new aspects of solvent description in electrolyte theory, Electrochim. Acta, 1981, vol. 26, p. 1.
  3. Kornyshev, A.A and Volkov, A.G., On the evaluation of standard Gibbs energies of ion transfer between two solvents, J. Electroanal. Chem. Interfacial Electrochem., 1984, vol. 180, p. 363.
  4. Kornyshev, A.A., Vorotyntsev, M.A., Nielsen, H., and Ulstrup, J., Non-local screening effects in the longrange interionic interaction in a polar solvent, J. Chem. Soc., Faraday Trans. 2, 1982, vol. 78, p. 217.
  5. Vorotyntsev, M.A. and Kornyshev, A.A., Physical significance of an effective dielectric constant that depends on the distance from the electrode, Sov. Electrochem., 1979, vol. 15, p. 560.
  6. Vorotyntsev, M.A., Kornyshev, A.A., and Rubinshtein, A.I., Possible mechanisms of “controlling” ionic interaction at the electrode-solution interface, Sov. Electrochem., 1980, vol. 16, p. 65.
  7. Vorotyntsev, M.A. and Kornyshev, A.A., Electrostatic interaction on a metal-insulator interface, Sov. Phys.–JETP, 1980, vol. 51, p. 509.
  8. Kornyshev, A.A. and Vorotyntsev, M.A., Nonlocal electrostatic approach to the double layer and adsorption at the electrode-electrolyte interface, Surf. Sci., 1980, vol. 101, p. 23.
  9. Kornyshev, A.A., Vorotyntsev, M. A., and Ulstrup, J., The effect of spatial dispersion of the dielectric permittivity on the capacitance of thin insulating films: Nonlinear dependence of the inverse capacitance on film thickness, Thin Solid Films, 1981, vol. 75, p. 105.
  10. Kornyshev, A.A. and Vorotyntsev, M.A., Nonlocal dielectric response of the electrode/solvent interface in the double layer problem, Can. J. Chem., 1981, vol. 59, p. 2031.
  11. Kornyshev, A.A., Schmickler, W., and Vorotyntsev, M.A., Nonlocal electrostatic approach to the problem of a double layer at a metal-electrolyte interface, Phys. Rev. B, 1982, vol. 25, p. 5244.
  12. Vorotyntsev, M.A., Izotov, V.Yu., and Kornyshev, A.A., Differential capacitance of the electric double layer in dilute solutions of surface-inactive electrolytes and upon the specific adsorption of ions: nonlocal and nonlinear effects, Sov. Electrochem., 1983, vol. 19, p. 364.
  13. Vorotyntsev, M.A. and Kornyshev, A.A., Models to describe collective properties of the metal/solvent interface in electric double-layer theory, Sov. Electrochem., 1984, vol. 20, p. 1.
  14. Vorotyntsev, M.A. and Holub, K., Image forces at the metal/electrolyte solution interface: their dependence on electrode charge and electrolyte concentration, Sov. Electrochem., 1984, vol. 20, p. 243.
  15. Holub, K. and Kornyshev, A.A., Comment on the solvent structure in thermodynamics of electrolytes: anomalous behavior of activity coefficients at low concentrations, J. Electroanal. Chem. Interfacial Electrochem., 1982, vol. 142, p. 57.
  16. Kornyshev, A.A., Non-local dielectric response of a polar-solvent and Debye-screening in ionic solution, J. Chem. Soc., Faraday Trans. 2, 1983, vol. 79, p. 651.
  17. Kornyshev, A.A., Nonlocal electrostatics of salvation, in The Chemical Physics of Solvation, Dogonadze, R.R., Kalman, E., Kornyshev, A.A., and Ulstrup, J., Eds., Amsterdam: Elsevier, 1985.
  18. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (Electrostatics of Media with Spatial Dispersion), Moscow: Nauka, 1993.
  19. Kornyshev, A.A. and Sutmann, G., The shape of the nonlocal dielectric function of polar liquids and the implications for thermodynamic properties of electrolytes: a comparative study, J. Chem. Phys., 1996, vol. 104, p. 1524.
  20. Rubashkin, A.A., Vorotyntsev, M.A., Antipov, E.M., and Aldoshin, S.M., Nonlocal electrostatic theory of ion solvation: A combination of the overscreening effect in the dielectric response of the medium with a smeared ion charge distribution, Dokl. Phys. Chem., 2015, vol. 464, p. 198.
  21. Rubashkin, A.A. and Vorotyntsev, M.A., Electrostatic contribution to the ion solvation energy: Overscreening effect in the nonlocal dielectric response of the polar medium, Curr. Phys. Chem., 2016, vol. 6, p. 120.
  22. Kornyshev, A.A., Rubinshtein, A.I., and Vorotyntsev, M.A., Model nonlocal electrostatics: 1, J. Phys. C: Solid State Phys., 1978, vol. 11, p. 3307.
  23. Vorotyntsev, M.A. Model nonlocal electrostatics: II. Spherical interface, J. Phys. C: Solid State Phys., 1978, vol. 11, p. 3323.
  24. Kornyshev, A.A. and Vorotyntsev, M.A., Model nonlocal electrostatics: 3. Cylindrical interface, J. Phys. C: Solid State Phys., 1979, vol. 12, p. 4939.
  25. Basilevsky, M.V. and Parsons, D.F., An advanced continuum medium model for treating solvation effects: nonlocal electrostatics with a cavity, J. Chem. Phys., 1996, vol. 105, p. 3734.
  26. Basilevsky, M.V. and Parsons, D.F., Nonlocal continuum solvation model with exponential susceptibility kernels, J. Chem. Phys., 1998, vol. 108, p. 9107.
  27. Hildebrandt, A., Blossey, R., Rjasanow, S., Kohlbacher, O., and Lenhof, H.-P., Novel formulation of nonlocal electrostatics, Phys. Rev. Lett., 2004, vol. 93, p. 108104–1.
  28. Rubinstein, A. and Sherman, S., Influence of the Solvent Structure on the Electrostatic Interactions in Proteins, Biophys. J., 2004, vol. 87, p. 1544.
  29. Rubinstein, A.I., Sabirianov, R.F., and Namavar, F., Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach, Nanotechnology, 2016, vol. 27, p. 415703.
  30. Rubinstein, A., Sabirianov, R.F., Mei, W.N., Namavar, F., and Khoynezhad, A., Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach, Phys. Rev. E, 2010, vol. 82, p. 021915.
  31. Bardhan, J.P., Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins, J. Chem. Phys., 2011, vol. 135, p. 104113–1.
  32. Paillusson, F. and Blossey, R., Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics, Phys. Rev. E, 2010, vol. 82, p. 052501–1.
  33. Rubashkin, A.A., The role of spatial dispersion of the dielectric constant of spherical water cavity in the lowering of the free energy of ion transfer to the cavity, Russ. J. Electrochem., 2014, vol. 50, p. 1090.
  34. Vorotyntsev, M.A. and Rubashkin, A.A. Electrostatic contribution to the ion solvation energy: cavity effects, Phys. Chem. Liq., 2017, vol. 55, p. 141.
  35. Kharkats, Yu.I., Kornyshev, A.A., and Vorotyntsev, M.A., Electrostatic Models in the Theory of Solutions, J. Chem. Soc., Faraday Trans. 2, 1976, vol. 72, p. 361.
  36. Zubarev, D.N., Neravnovesnaya statisticheskaya termodinamika (Non-Equilibrium Statistical Thermodynamics), Moscow: Nauka, 1971.
  37. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, Vol. 3: Quantum Mechanics Non-Relativistic Theory, Oxford: Pergamon, 1965, 2nd ed.