Electrochemical Behavior of Novel Composite Based on Reduced Graphene Oxide, Poly-o-Phenylenediamine, and Silicotungstic Аcid

E. Yu. Pisarevskaya E. Yu. Pisarevskaya , A. L. Klyuev A. L. Klyuev , O. N. Efimov O. N. Efimov , V. N. Andreev V. N. Andreev
Российский электрохимический журнал
Abstract / Full Text

The behavior of novel electroactive material based on reduced graphene oxide (RGO), poly-o-phenylenediamine (PPD), and silicotungstic acid (SiW) is studied using the methods of cyclic voltammetry (CVA) and electrochemical impedance. It is found that graphene oxide (GO) has a catalytic effect on the electrochemical codeposition of PPD and SiW onto the GO film during fabricating the RGO–PPD–SiW composite. It is shown that the composite has at least six redox transitions depending on the chosen range of cycling potentials. It is found that, at the potentials of 200 and 500 mV (Ag/AgCl), the conductivity of the composite is by 4 orders of magnitude higher than that of PPD. By the example of quinone-hydroquinone and ferro-ferricyanide redox reactions, it is shown that, in this potential range, the composite exhibits electrocatalytic properties, though neither PPD nor SiW individually exhibit pronounced redox transitions in this potential range.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

    E. Yu. Pisarevskaya, A. L. Klyuev & V. N. Andreev

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia

    O. N. Efimov

  1. Yuan, M. and Minteer, S.D., Redox polymers in electrochemical systems: From methods of mediation to energy storage, Curr. Opin. Electrochem., 2019, vol. 6, p. 1. https://doi.org/10.1016/j.coelec.2019.03.003
  2. Brownson, D.A.C., Smith, G.C., and Banks C.E., Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis, R. Soc. Open Sci., 2017, vol. 4, p. 171128. https://doi.org/10.1098/rsos.171128
  3. Wang, D., Liu, L., Jiang, J., Chen, L., and Zhao, J., Polyoxometalate-based composite materials in electrochemistry: state-of-the-art progress and future outlook, Nanoscale, 2020, vol. 12, p. 5705. https://doi.org/10.1039/C9NR10573E
  4. Bar-Cohen, Y., Ch. 8. Electroactive Polymers as Actuators, in Advanced Piezoelectric Materials, Science and Technology, Woodhead Publishing in Materials, 2017, 2nd Ed., p. 319–352. https://doi.org/10.1016/B978-0-08-102135-4.00008-4
  5. Sadakane, M. and Steckhan, E., Electrochemical properties of polyoxometalates as electrocatalysts, Chem. Rev., 1998, vol. 98, p. 219. https://doi.org/10.1021/cr960403a
  6. Sachdeva, S., Turner, J.A., Horan, J.L., and Herring, A.M., The use of heteropoly acids in proton exchange fuel cells, in Fuel Cells and Hydrogen Storage. Structure and Bonding, Bocarsly, A. and Mingos, D., Eds., Springer, Berlin, 2011, vol. 141, p. 115–168. https://doi.org/10.1007/430_2011_45
  7. Vernon, D.R., Meng, F., Dec, S.F., Williamson, D.L., Turner, J.A., and Herring, A.M., Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications, J. Power Sources, 2005, vol. 139, p. 141. https://doi.org/10.1016/j.jpowsour.2004.07.027
  8. Pisarevskaya, E.Y., Kolesnichenko, I.I., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., A novel multifunctional composite based on reduced graphene oxide, poly-o-phenylenediamine and silicotungstic acid, Synth. Met., 2020, vol. 270, p. 116596. https://doi.org/10.1016/j.synthmet.2020.116596
  9. Pisarevskaya, E.Y., Klyuev, A.L., Averin, A.A., Gorbunov, A.M., and Efimov, O.N., One-pot electrosynthesis and physicochemical properties of multifunctional material based on graphene oxide, poly-o-phenylenediamine, and silicotungstic acid, J. Solid. State Electrochem., 2020, vol. 25, p. 859. https://doi.org/10.1007/s10008-020-04859-w
  10. Nipane, S.V., Mali, M.G., and Gokavi, G.S., Reduced graphene oxide supported silicotungstic acid for efficient conversion of thiols to disulfides by hydrogen peroxide, Ind. Eng. Chem. Res., 2014, vol. 53, no. 10, p. 3924. https://doi.org/10.1021/ie404139z
  11. Nechvílová, K., Kalendová, A., and Stejskal, J., Anticorrosive properties of silicotungstic acid and phosphotungstic heteropolyacid in the paint films, Koroze Ochr. Mater., 2016, vol. 60, p. 122. https://doi.org/10.1515/kom-2016-0019
  12. Cui, M., Ren, S., Pu, J., Wang, Y., Zhao, H., and Wang, L., Poly(o-phenylenediamine) modified graphene toward the reinforcement in corrosion protection of epoxy coatings, Corros. Sci., 2019, vol. 159, p. 108131. https://doi.org/10.1016/j.corsci.2019.108131
  13. Lan, H., Muslim, A., and Wang, L., Preparation of poly(o-phenylenediamine) nanoparticles with hydrolysed PEO45-b-PtBA35 as template and its electrochemical properties, Micro Nano Lett., 2020, vol. 15, no. 9, p. 618. https://doi.org/10.1049/mnl.2019.0636
  14. Zhu, H., Wang, X. L., Liu, X. X., and Yang, X. R., Integrated synthesis of poly(o-phenylenediamine) derived carbon materials for high performance supercapacitors, Adv. Mater., 2012, vol. 24, p. 6524. https://doi.org/10.1002/adma.201202461
  15. Sivakkumar, S.R. and Saraswathi, R., Application of poly(o-phenylenediamine) in rechargeable cells, J. Appl. Electrochem., 2004, vol. 34, p. 1147. https://doi.org/10.1007/s10800-004-3302-8
  16. Kulesza, P.J. and Faulkner, L.R., Solid-state electroanalysis of silicotungstic acid single crystals at an ultramicrodisk electrode, J. Am. Chem. Soc., 1993, vol. 115, p. 11878. https://doi.org/10.1021/ja00078a028
  17. Shanmugam, S., Viswanathan, B., and Varadarajan, T.K., Synthesis and characterization of silicotungstic acid based organic–inorganic nanocomposite membrane, J. Membr. Sci., 2006, vol. 275, p 105. https://doi.org/10.1016/j.memsci.2005.09.009
  18. Elgrishi, N., Rountree, K.J., McCarthy, B.D, Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ., 2018, vol. 95, p. 197. https://doi.org/10.1021/acs.jchemed.7b00361
  19. Pisarevskaya, E.Y., Rychagov, A.Y., Gorbunov, A.M., Averin, A.A., Makarychev, Y.B., and Efimov, O.N., Synthesis of nanostructured conducting composite films based on reduced graphene oxide and o-phenylenediamine, Synth. Met., 2018, vol. 243, p. 1. https://doi.org/10.1016/j.synthmet.2018.05.006
  20. Biswas, S. and Drzal, L.T., Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes, Chem. Mater., 2010, vol. 22, no. 20, p. 5667. https://doi.org/10.1021/cm101132g
  21. Casado, N., Hernández, G., Sardon, H., and Mecerreyes, D., Current trends in redox polymers for energy and medicine, Prog. Polym. Sci., 2016, vol. 52, p. 107. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2015.08.003
  22. Ramya, R., Sivasubramanian, R., and Sangaranarayanan, M.V., Conducting polymers-based electrochemical supercapacitors—Progress and prospects, Electrochim. Acta, 2013, vol. 101, p. 109. https://doi.org/https://doi.org/10.1016/j.electacta.2012.09.116
  23. Eckermann, A.L., Feld, D.J., Shaw, J.A., and Meade, T.J., Electrochemistry of redox-active self-assembled monolayers, Coord. Chem. Rev., 2010, vol. 254, p. 1769. https://doi.org/10.1016/j.ccr.2009.12.023
  24. Bott, A.W., Electrochemical techniques for the characterization of redox polymers, Curr. Sep., 2001, vol. 19, no. 3, p. 71.
  25. Bisquert, J., Garcia-Belmonte, G., Bueno, P., Longo, E., and Bulhões, L.O.S., Impedance of constant phase element (CPE)-blocked diffusion in film electrodes, J. Electroanal. Chem., 1998, vol. 452, p. 229. https://doi.org/10.1016/S0022-0728(98)00115-6
  26. Gosser, D.K., Jr., Cyclic Voltammetry – Simulation and Analysis of Reaction Mechanisms, VCH, New York, 1993.
  27. Shayani-jam, H., Electrochemical study of adsorption and electrooxidation of 4,4'-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules, Monatsh. Chem., 2019, vol. 150, p. 183. https://doi.org/10.1007/s00706-018-2318-4