Examples



mdbootstrap.com



 
Статья
2018

Oxidative Desulfurization of Hydrocarbon Feedstock


A. V. AkopyanA. V. Akopyan, R. A. FedorovR. A. Fedorov, B. V. AndreevB. V. Andreev, A. V. TarakanovaA. V. Tarakanova, A. V. AnisimovA. V. Anisimov, E. A. KarakhanovE. A. Karakhanov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218040018
Abstract / Full Text

Papers published in the past decade on oxidative desulfurization of hydrocarbon raw materials using hydrogen peroxide, oxygen, and ozone as oxidants, and also using ultrasonic treatment and adsorption and extraction methods for separating the oxidized sulfur-containing compounds are summarized and systematized.

Author information
  • Moscow State University, Moscow, RussiaA. V. Akopyan, R. A. Fedorov, A. V. Tarakanova, A. V. Anisimov & E. A. Karakhanov
  • OOO IPOS, Nauchnyi proezd 17, Moscow, 117246, RussiaB. V. Andreev
References
  1. Shang, H. and Zhang, H., J. Ind. Eng. Chem., 2013, vol. 19, pp. 1426–1432.
  2. Campos-Martin, J.M., Capel-Sanchez, M.C., Perez-Presas, P., and Fierro, J.L., J. Chem. Technol. Biotechnol., 2010, vol. 85, pp. 879–890.
  3. Javadli, R. and de Klerk, A., Petrochem. Res., 2012, no. 1, pp. 3–19.
  4. Anisimov, A.V. and Tarakanova, A.V., Zh. Ross. Khim. O–va. im. D.I. Mendeleeva, 2008, vol. LII, no. 4, pp. 32–40.
  5. Rana, M.S. and Samano, V.A., Fuel, 2007, vol. 86, pp. 1216–1231.
  6. Sharipov, A.Kh. and Nigmatullin, V.R., Petrol. Chem., 2005, vol. 45, no. 6, pp. 371–383.
  7. Aslanov, L.A. and Anisimov, A.V., Petrol. Chem., 2004, vol. 44, no. 2, pp. 65–69.
  8. Akopyan, A.V., Fedorov, R.A., Anisimov, A.V., et al., Petrol. Chem., 2017, vol. 57, no. 12, pp. 1132–1136.
  9. Patent RU 2619946, Publ. 2017.
  10. Ismagilov, Z., Yashnik, S., Kerzhentsev, M., et al., Catal. Rev., 2011, vol. 53, no. 3, pp. 199–255.
  11. Akopyan, A.V., Ivanov, E.V., Polikarpova, P.D., et al., Petrol. Chem., 2015, vol. 55, no. 7, pp. 571–574.
  12. Jiang, Z., Lu, H., Zhang, Y., and Li, C., Chin. J. Catal., 2011, vol. 32, no. 5, pp. 707–715.
  13. Dehkordi, A.M., Kiaei, Z., Sobati, M.A., Fuel Process. Technol., 2009, vol. 90, pp. 435–445.
  14. Akopyan, A.V., Kardasheva, Y.S., Eseva, E.A., et al., Petrol. Chem., 2016, vol. 56, no. 8, pp. 771–773.
  15. Rakhmanov, E.V., Anisimov, A.V., Tarakanova, A.V., et al., Petrol. Chem., 2013, vol. 53, no. 3, pp. 201–204.
  16. Rakhmanov, E.V., Jinyuan, D., Fedorova, O.A., et al., Petrol. Chem., 2011, vol. 51, no. 3, pp. 216–221.
  17. Rakhmanov, E.V., Tarakanova, A.V., Valieva, T., et al., Petrol. Chem., 2014, vol. 54, no. 1, pp. 48–50.
  18. Rakhmanov, E.V., Akopyan, A.V., Tarakanova, A.V., et al., Khim. Tekhnol., 2016, vol. 17, no. 11, pp. 503–508.
  19. Anisimov, A.V., Myltykbaeva, Zh.K., Muktaly, D., et al., Khim. Tekhnol., 2016, vol. 17, no. 2, pp. 74–77.
  20. Ma, C., Chen, D., Liu, F., et al., RSC Adv., 2015, vol. 5, pp. 6945–6952.
  21. Sharipov, A.Kh., Mukhametova, R.R., Nigmatullin, I.R., Nigmatullin, V.R., et al., Petrol. Chem., 2008, vol. 48, no. 6, pp. 466–470.
  22. Borisov, I.M., Gazizova, Z.Sh., Shayakhmetova, G.V., et al., Petrol. Chem., 2015, vol. 55, no. 3, pp. 224–228.
  23. Gobara, H.M., Nessim, M.I., Zaky, M.T., et al., Catal. Lett., 2014, vol. 144, no. 6, pp. 1043–1052.
  24. Patent RU 2472841 A2, Publ. 2013.
  25. Patent RU 2235112 A1, Publ. 2012.
  26. Patent US 20092002206 A1, Publ. 2009.
  27. Patent CN 103446955 A, Publ. 2013.
  28. Patent US 2012018350 A1, Publ. 2012.
  29. Patent WO 2011115707 A1, Publ. 2011.
  30. Patent JP 2009235406 A, Publ. 2009.
  31. Patent US 2009242459 A1, Publ. 2009.
  32. Ali, S.H., Hamad, D.M., Albusairi, B.H., et al., Energy Fuels, 2009, vol. 23, pp. 5986–5994.
  33. Zhang, M., Zhu, W., Hun, S., et al., Chem. Eng. J., 2013, vol. 220, pp. 328–336.
  34. Krivtsov, E.B. and Golovko, A.K., Petrol. Chem., 2014, vol. 54, no. 1, pp. 51–57.
  35. Dehkordi, A.M., Sobati, M.A., and Nasem, M.A., Chin. J. Chem. Eng., 2009, vol. 17, no. 5, pp. 869–874.
  36. Wang, D., Qian, E.W., Amano, H., et al., Appl. Catal., 2003, vol. 253, pp. 91–99.
  37. Jiang, X., Li, H., Zhu, W., et al., Fuel, 2009, vol. 88, pp. 431–436.
  38. Rakhmanov, E.V., Baranova, S.V., Wang, Z., et al., Petrol. Chem., 2014, vol. 54, no. 4, pp. 316–322.
  39. Shen, Y., Lu, X., Ma, X., et al., Kinet. Catal., 2017, vol. 58, no. 1, pp. 28–33.
  40. Zhang, J., Wang, A., Li, X., et al., J. Catal., 2011, vol. 279, pp. 269–275.
  41. Yashnik, S.A., Kerzhentsev, M.A., Sal’nikov, A.V., et al., Kinet. Catal., 2015, vol. 56, no. 4, pp. 466–475.
  42. Anisimov, A.V., Tkhai, F.V., Tarakanova, A.V., et al., Vestn. Mosk. Gos. Univ., Ser. 2: Khim., 2008, vol. 49, no. 1, pp. 58–65.
  43. Tarakanova, A.V., Baishev, M.Kh., Rakhmanov, E.V., et al., Khim. Tekhnol., 2009, vol. 10, no. 7, pp. 388–393.
  44. Jiang, Z., Hongying, L., Zhang, Y., and Can, L., Chin. J. Catal., 2011, vol. 32, pp. 707–715.
  45. Tang, Q., Lin, S., Cheng, Y., et al., Ultrason. Sonochem., 2013, vol. 20, pp. 1168–1175.
  46. Wan Abdullah, W.N., Wan Abu Bakar, W.A., and Ali, R., Korean J. Chem. Eng., 2015, vol. 32, no. 10, pp. 1999–2206.
  47. Al-Shahrani, F., Tiancun, X., and Green, M.L., Oil Gas J., 2010, vol. 108, pp. 41–47.
  48. Zhu, W., Zhu, G., Li, H., et al., Fuel Process. Technol., 2013, vol. 106, pp. 70–76.
  49. Chen, J., Chen, C., Zhang, R., et al., RSC Adv., 2015, vol. 5, pp. 25904–25910.
  50. Tarkhanova, I.G., Anisimov, A.V., Buryak, A.K., and Bryzhin, A.A., Petrol. Chem., 2017, vol. 57, no. 10, pp. 859–867.
  51. Rakhmanov, E.V., Domashkin, A.A., Myltykbaeva, Z.K., et al., Petrol. Chem., 2016, vol. 56, no. 8, pp. 742–744.
  52. Chen, X., Song, D., Asumana, C., and Yu, G., J. Mol. Catal. A: Chem., 2012, vol. 359, pp. 8–13.
  53. Jiang, W., Zhu, W., Chang, Y., et al., Energy Fuels, 2014, vol. 28, pp. 2754–2760.
  54. Rakhmanov, E.V., Zixiao, W., Tarakanova, A.V., et al., Petrol. Chem., 2012, vol. 52, no. 3, pp. 213–214.
  55. Chen, X., Guan, Y., Abdeltawab, A.A., et al., Fuel, 2015, vol. 146, pp. 6–12.
  56. Patent US 2012022272 A1, Publ. 2012.
  57. Patent US 2009120238 A1, Publ. 2009.
  58. Patent RU 2581473 A1, Publ. 2016.
  59. Patent CN 103252229 A, Publ. 2013.
  60. Patent MX 2013000819, Publ. 2013.
  61. Patent CN 103585954 A, Publ. 2014.
  62. Tang, N., Jiang, Z., and Li, C., Green Chem., 2015, vol. 17, pp. 817–820.
  63. Zhang, W., Zhang, H., Xiao, J., et al., Green Chem., 2014, vol. 16, pp. 211–220.
  64. Lu, H., Ren, W., Liao, W., et al., Appl. Catal. B: Environ., 2013, vol. 138, pp. 79–83.
  65. Tomskii, I.S., Vishnetskaya, M.V., Vakhrushin, P.A., and Tomskaya, L.A., Petrol. Chem., 2017, vol. 57, no. 10, pp. 908–913.
  66. Patent RU 2341549 C2, Publ. 2008.
  67. Patent CN 103589450 A, Publ. 2014.
  68. Patent CN 104419446 A, Publ. 2015.
  69. Patent RU 2381065 C1, Publ. 2010.
  70. Patnet RU 2381067 C1, Publ. 2010.
  71. Patent RU 2529500 C1, Publ. 2014.
  72. Ismagilov, Z.R., Kerzhentsev, M.A., Yashnik, S.A., et al., Eurasian Chem. Technol. J., 2015, vol. 17, no. 2, pp. 119–128.
  73. Lin, F., Zhang, Y., Wang, L., et al., Appl. Catal. B: Environ., 2012, vol. 127, pp. 363–370.
  74. Zhu, W.S., Wang, C., Li, H.P., et al., Green Chem., 2015, vol. 17, pp. 2464–2472.
  75. Yashnik, S.A., Salnikov, A.V., Kerzhentsev, M.A., et al., Kinet. Catal., 2017, vol. 58, no. 1, pp. 58–72.
  76. Pysh’yev, S., Chem. Chem. Technol., 2012, pp. 229–235.
  77. Zhizhina, E.G. and Odyakov, V.F., React. Kinet. Catal. Lett., 2008, vol. 95, pp. 301–312.
  78. Mjalli, F.S., Ahmed, O.U., Al-Wahaibi, T., et al., Rev. Chem. Eng., 2014, vol. 30, pp. 337–378.
  79. Ding, J.-W. and Wang, R., Chin. Chem. Lett., 2016, vol. 27, pp. 655–658.
  80. Kazakov, A.A., Tarakanov, G.V., and Ionov, N.G., Khim. Tekhnol. Topl. Masel, 2016, no. 1 (593), pp. 23–25.
  81. Kazakov, A.A., Tarakanov, G.V., and Ionov, N.G., Tekhnol. Nefti Gaza, 2013, no. 2 (85), pp. 23–26.
  82. Akopyan, A.V., Grigoriev, D.A., Polikarpova, P.D., et al., Petrol. Chem., 2017, vol. 57, no. 5, pp. 904–907.
  83. Ban, L.L., Liu, P., Ma, C.H., and Dai, B., Catal. Today, 2013, vol. 211, pp. 78–83.
  84. Shi, P. and Liu, C., Catal. Lett., 2009, vol. 133, pp. 112–118.
  85. Kim, T.K. and Lee, W.G., J. Ind. Eng. Chem., 2012, vol. 18, pp. 1710–1714.
  86. Okubo, M., Arita, N., Kuroki, T., et al., Plasma Chem. Plasma Process., 2008, vol. 28, pp. 173–187.
  87. Ma, C., Dai, B., and Liu, P., J. Ind. Eng. Chem., 2014, vol. 20, no. 5, pp. 2769–2774.
  88. Zaikin, Y.A., Radiat. Phys. Chem., 2016, vol. 122, pp. 93–99.
  89. Stavitskaya, A.V., Konstantinova, M.L., Razumovskii, S.D., et al., Petrol. Chem., 2018, vol. 57, no. 12, pp. 1012–1017.
  90. Etemadi, O. and Yen, T.F., Energy Fuels, 2007, vol. 21, pp. 1622–1627.
  91. Chen, T.-C., Shen, Y.-H., Lee, W.-J., et al., J. Clean. Prod., 2010, vol. 18, pp. 1850–1858.
  92. Lu, M.C., Biel, L.C.C., Wan, M.-W., et al., Int. J. Green Energy, 2014, vol. 11, pp. 833–848.
  93. Lu, M.C., Biel, L.C.C., Wan, M.-W., et al., Desalin. Water Treat., 2015, pp. 1–11.
  94. Lu, M.C., Agripa, M.L., Wan, M.-W., Dalida, M.L.P., Desalin. Water Treat., 2013, vol. 52, pp. 873–879.
  95. Ogunlaja, A.S., Coombes, M.J., Torto, N., and Tshentu, Z., React. Funct. Polym., 2014, vol. 81, pp. 61–76.
  96. Etemadi, O. and Yen, T.F., Energy Fuels, 2007, vol. 21, pp. 2250–2257.
  97. Chen, T., Agripa, M.L., Lu, M., and Dalida, M.L.P., Energy Fuels, 2016, vol. 30, no. 5, pp. 3870–3878, doi: 10.1021/acs.energyfuels.6b00230.
  98. Wang, Y., Yang, R.T., and Heinzel, J.M., Ind. Eng. Chem. Res., 2008, vol. 48, pp. 142–147.
  99. Futalan, C.M., Kan, C., and Dalida, M.L.P., Sustain. Environ. Res., 2011, vol. 21, pp. 361–367.
  100. Futalan, C.M., Kan, C.C., Dalida, M.L., et al., Carbohydr. Polym., 2011, vol. 83, pp. 697–704.
  101. Choi, A.E.S., Roces, S., Dugos, N., and Wanc, N.-W., Fuel, 2017, vol. 205, pp. 153–160.
  102. Janiak, C. and Vieth, J.K., New J. Chem., 2010, vol. 34, pp. 2366–2388.
  103. Ferey, G., Stud. Surf. Sci. Catal., 2007, vol. 168, pp. 327–374.
  104. Corma, A., Garcia, H., Llabres, F.X., and Xamena, I., Chem. Rev., 2010, vol. 110, pp. 4606–4655.
  105. Dhakshinamoorthy, A., Alvaro, M., and Garcia, H., J. Catal., 2012, vol. 289, pp. 259–265.
  106. Fang, Q.R., Makal, T.A., Young, M.D., and Zhou, H.C., Comments Inorg. Chem., 2010, vol. 31, pp. 165–195.
  107. Xuan, W., Zhu, C., Liu, Y., and Cui, Y., Chem. Soc. Rev., 2012, vol. 41, pp. 1677–1695.
  108. Chen, Y.-Z., Zhang, R., Jiao, L., and Jiang, H.-L., Coord. Chem. Rev., 2018, vol. 362, pp. 1–23.
  109. Ferrey, G., Mellot-Draznieks, C., and Millange, F., Acc. Chem. Res., 2005, vol. 38, p.217.
  110. Ahmed, I. and Sung Hwa Jhung, S.H., J. Hazard. Mater., 2016, vol. 301, pp. 259–276.
  111. Ki Chul Kim, J. Organomet. Chem., 2018, vol. 854, pp. 94–105.
  112. Bagheri, M., Masoomi, M.Y., and Morsali, A., J. Hazard. Mater., 2017, vol. 331, pp. 142–149.
  113. Khan, N.A. and Jhung, S.H., J. Hazard. Mater., 2017, vol. 325, pp. 198–213.
  114. Shi, R.-H., Zhang, Z.-R., Fan, H.-L., et al., Appl. Surf. Sci., 2017, vol. 394, pp. 394–402.
  115. Belmabkhout, Y., Pillai, R.S., Alezi, D., et al., J. Mater. Chem. A, 2017, vol. 5, pp. 3293–3303.
  116. Bhatt, P.M., Belmabkhout, Y., Assen, A.H., et al., Chem. Eng. J., 2017, vol. 324, pp. 392–396.
  117. Mohideen, M.I.H., Pillai, R.S., Adil, K., et al., Chem, 2017, vol. 3, no. 5, pp. 822–833.
  118. Ebrahim, A.M., Jagiello, J., and Bandosz, T.J., J. Mater. Chem. A, 2015, vol. 3, pp. 8194–8204.
  119. Khan, N.A., Bhadra, B.N., and Jhung, S.H., Chem. Eng. J., 2018, vol. 334, pp. 2215–2221.
  120. Aslam, S., Subhan, F., Yan, Z., et al., Chem. Eng. J., 2017, vol. 315, pp. 469–480.
  121. Khan, N.A. and Jhung, S.H., J. Hazard. Mater., 2013, vol. 260, pp. 1050–1056.
  122. Khan, N.A., Kim, C.M., and Jhung, S.H., Chem. Eng. J., 2017, vol. 311, pp. 20–27.
  123. Chen, Z., Ling, L., Wang, B., et al., Appl. Surf. Sci., 2016, vol. 387, pp. 483–490.
  124. Blanco-Brieva, G., Campos-Martin, J.M., Al-Zahran, S.M., and Fierro, J.L.G., Fuel, 2011, vol. 90, no. 1, pp. 190–197.
  125. Zhang, X., Huang, P., Liu, A., and Zhu, M., Fuel, 2017, vol. 209, pp. 417–423.
  126. Liu, Q., Gong, Y., Wang, T., and Chan, W.-L., Carbon, 2016, vol. 96, pp. 203–211.
  127. Wang, L., Yang, R.T., and Sun, C.-L., AIChE J., 2013, vol. 59, pp. 29–32.
  128. Sun, B., Yu, X., Wang, L., et al., J. Fuel Chem. Technol., 2016, vol. 44, no. 9, pp. 1074–1081.
  129. Zhang, X.M., Chang, X.F., Gondal, M.A., et al., Appl. Surf. Sci., 2012, vol. 258, no. 20, pp. 7826–7832.
  130. Zhang, Y. and Wang, R., Diamond Relat. Mater., 2017, vol. 73, pp. 161–168.
  131. Zhang, H., Zhang, Q., Zhang, L., et al., Chem. Eng. J., 2018, vol. 334, pp. 285–295.
  132. Dizaji, A.K., Mortaheb, H.R., and Mokhtarani, B., Chem. Eng. J., 2018, vol. 335, pp. 362–372.
  133. Abdi, G., Ashokkumar, M., and Alizadeh, A., Fuel, 2017, vol. 210, pp. 639–645.
  134. Abro, R., Abdeltawab, A.A., Al-Deyab, S.S., et al., RSC Adv., 2014, vol. 67, pp. 302–317.
  135. Asumana, C., Yu, G.R., Li, X., et al., Green Chem., 2010, vol. 12, pp. 2030–2037.
  136. Li, F.T., Liu, R.H., and Wen, J.H., Green Chem., 2009, vol. 11, pp. 883–892.
  137. Ban, L.L., Liu, P., Ma, C.H., and Dai, B., Chin. Chem. Lett., 2013, vol. 24, pp. 755–758.
  138. Chen, Y., Song, H., Meng, H., et al., Fuel Process. Technol., 2017, vol. 158, pp. 20–25.
  139. Liu, W., Jiang, W., Zhu, W., et al., J. Mol. Catal. A: Chem., 2016, vol. 424, pp. 261–268.
  140. Shiraishi, Y. and Hirai, T., Energy Fuels, 2003, vol. 18, no. 1, pp. 37–40.
  141. Bunthid, D., Prasassarakich, P., and Hinchiranan, N., Fuel, 2010, vol. 89, no. 9, pp. 2617–2622.
  142. Chen, X., Guan, Y., and Abdeltawab, A.A., Fuel, 2015, vol. 146, p.6.
  143. Mochizuki, Y. and Sugawara, K., Energy Fuels, 2008, vol. 22, p. 3303.
  144. Chen, X., Guan, Y., and Abdeltawab, A.A., Fuel, 2015, vol. 146, pp. 6–12.
  145. Wang, L., Sun, B., Yang, F.H., and Yang, R.T., Chem. Eng. Sci., 2012, vol. 73, pp. 208–217.
  146. Nie, Y., Dong, Y., Bai, L., et al., Fuel, 2013, vol. 103, pp. 997–1002.
  147. Gao, J.J., Meng, H., Lu, Y.Z., et al., AIChE J., 2013, vol. 59, pp. 948–958.
  148. Ko, N.H., Lee, J.S., Huh, E.S., and Lee, H., Energy Fuels, 2008, vol. 22, pp. 1687–1690.
  149. Wang, J.L., Yao, H.W., Nie, Y., et al., J. Mol. Liq., 2012, vol. 169, pp. 152–155.
  150. Zhu, W.S., Wu, P.W., Yang, L., et al., Chem. Eng. J., 2013, vol. 229, pp. 250–256.
  151. Bosmann, A., Datsevich, L., Jess, A., et al., Chem. Commun., 2001, vol. 23, pp. 2494–2495.
  152. Gao, S., Chen, X., Abro, R., et al., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 9421–9430.
  153. Kedra-Krolik, K., Mutelet, F., Moise, J.-C., and Jaubert, J.-N., Energy Fuels, 2011, vol. 25, pp. 1559–1565.
  154. Rafiei Moghadam, F., Azizian, S., Bayat, M., et al., Fuel, 2017, vol. 208, pp. 214–222.
  155. Bhutto, A.W., Abro, R., Gao, S., et al., J. Taiwan Inst. Chem. Eng., 2016, vol. 62, pp. 84–97.
  156. Patent CN 02585888 A, Publ. 2012.
  157. Patent CN 103525453 A, Publ. 2014.
  158. Patent CN 105419853 A, Publ. 2016.
  159. Patent CN 103509590 A, Publ. 2014.
  160. Patent CN 102732289 A, Publ. 2012.
  161. Patent CN 104762101 A, Publ. 2015.
  162. Patent CN 105176570 A, Publ. 2015.
  163. Patent CN 102407094, Publ. 2012.
  164. Patent CN 104312621, Publ. 2015.
  165. Gao, J.J., Meng, H., Lu, Y.Z., et al., AIChE J., 2013, vol. 59, pp. 948–958.
  166. Ko, N.H., Lee, J.S., Huh, E.S., and Lee, H., Energy Fuels, 2008, vol. 22, pp. 1687–1690.
  167. Wang, J.L., Yao, H.W., Nie, Y., et al., J. Mol. Liq., 2012, vol. 169, pp. 152–155.
  168. Zhu, W.S., Wu, P.W., Yang, L., et al., Chem. Eng. J., 2013, vol. 229, pp. 250–256.
  169. Elwan, H.E., Zaky, M.T., Farag, A.S., et al., J. Mol. Liq., 2017, vol. 248, pp. 549–555.
  170. Dharaskar, S.A., Wasewa, K.L., Varma, M.N., and Shende, D.Z., J. Energy, 2013, vol. 2013, ID 581723.
  171. Zhang, L., Wang, J., Sun, Y., et al., Chem. Eng. J., 2017, vol. 328, pp. 445–453.
  172. Choi, A.E.S., Roces, S., Dugos, N., et al., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 2935–2942.
  173. Bhasarkar, J.B., Chakma, S., and Moholkar, V.S., Ultrason. Sonochem., 2015, vol. 24, pp. 98–106.
  174. Kuppa, R. and Moholkar, V.S., Ultrason. Sonochem., 2010, vol. 17, pp. 123–131.
  175. Ismagilov, Z., Catal. Rev., 2011, vol. 53, pp. 199–255.
  176. Patent RU 2619946 A1, Publ. 2017.
  177. Patent TW 201239078 A, Publ. 2012.
  178. Patent US 2008173571 A1, Publ. 2008.
  179. Patent CN 1034500931 A, Publ. 2013.
  180. Dehkordi, A.M., Kiaei, Z., and Sobati, M.A., Fuel Process. Technol., 2009, vol. 90, pp. 435–445.
  181. Bhasarkar, J.B., Chakma, S., and Moholkar, V.S., Ultrason. Sonochem., 2015, vol. 24, pp. 98–106.
  182. Behin, J. and Farhadian, N., Ultrason. Sonochem., 2017, vol. 38, pp. 50–61.
  183. Jalali, M.R. and Sobati, M.A., Appl. Therm. Eng., 2017, vol. 111, pp. 1158–1170.
  184. Jafari, M., Ebrahimi, S.L., and Khosravi-Nikou, M.R., Ultrason. Sonochem., 2018, vol. 40, pp. 955–968.
  185. Sato, T., Adschiri, T., Arai, K., et al., Fuel, 2003, vol. 82, pp. 1231–1239.
  186. Savage, P.E., Chem. Rev., 1999, vol. 99, pp. 603–621.
  187. Baiker, A., Chem. Rev., 1999, vol. 99, pp. 453–473.
  188. Yuan, P.Q., Cheng, Z.M., Jiang, W.L., et al., J. Supercrit. Fluids, 2005, vol. 35, pp. 70–75.
  189. Yeh, T.M., Dickinson, J.G., Franck, A., et al., J. Chem. Technol. Biotechnol., 2013, vol. 88, pp. 13–24.
  190. Zhang, D., Ren, Z., Wang, D., and Lu, K., J. Anal. Appl. Pyrol., 2017, vol. 123, pp. 56–64.
  191. Liu, J., Xing, Y., Yuan, P.-Q., et al., Ind. Eng. Chem. Res., 2018, vol. 57, no. 3, pp. 867–875.
  192. Yan, T., Chen, K., Wang, L., et al., Energy Fuels, 2017, vol. 31, no. 6, pp. 5882–5890.
  193. Kang, J., Myint, A.A., Sim, S., et al., J. Supercrit. Fluids, 2018, vol. 133, p. 1, pp. 133–138.
  194. Yan, T., Xu, J., Wang, L., et al., RSC Adv., 2015, vol. 5, pp. 75129–75140.