Examples



mdbootstrap.com



 
Статья
2021

The Influence of Interstitial Carbon and Oxygen on Grain Boundary Diffusion in Nickel and Silver


G. M. PoletaevG. M. Poletaev, I. V. ZoryaI. V. Zorya, R. Yu. RakitinR. Yu. Rakitin, M. D. StarostenkovM. D. Starostenkov
Российский физический журнал
https://doi.org/10.1007/s11182-021-02290-w
Abstract / Full Text

The paper investigates the influence of interstitial carbon and oxygen atoms on their diffusion along the <111>, <100> and <110> tilt grain boundaries in face-centered cubic nickel and silver. It is shown that in most cases, the impurity addition leads to the growth in the self-diffusion coefficient along the grain boundaries due to the crystal lattice distortion near the impurity atoms, thereby causing the additional lattice distortion and free volume along the grain boundaries. And the lower the initial free volume on the grain boundary, the stronger is the effect from impurities on the grain boundary diffusion. In this regard, the highest and lowest effects from the impurities are observed for the <110> and <100> tilt grain boundaries, respectively. It is found that the influence of interstitial carbon on the grain boundary diffusion is stronger than that of oxygen.

Author information
  • Polzunov Altai State Technical University, Barnaul, RussiaG. M. Poletaev & M. D. Starostenkov
  • Siberian State Industrial University, Novokuznetsk, RussiaI. V. Zorya
  • Altai State University, Barnaul, RussiaR. Yu. Rakitin
References
  1. R. G. A. Veiga, H. Goldenstein, M. Perez, and C. S. Becquart, Scripta Mater., 108, 19–22 (2015).
  2. L. E. Kar'kina, I. N. Kar'kin, I. L. Yakovleva, and T. A. Zubkova, Phys. Met. Metallogr., 114, No. 2 172–178 (2013).
  3. A. Atrens, Scripta Metall., 8, 401–412 (1974).
  4. V. Sursaeva and P. Zieba, Defect Diffus. Forum, 237–240, 578–583 (2005).
  5. G. M. Poletaev, M. D. Starostenkov, I. V. Zorya, et al., Russ. Phys. J., 61, No. 7, 1236–1240 (2018).
  6. T. Iwasaki, N. Sasaki, A. Yasukawa, and N. Chiba, Trans. Jpn. Soc. Mech. Eng. A, 40, 15–22 (1997).
  7. H. J. Goldschmidt, Interstitial Alloys, Butterworths, London (1967).
  8. L. Pauling, The Nature of the Chemical Bond, Third Edition, Cornell University Press, Ithaca (1960).
  9. F. Cleri and V. Rosato, Phys. Rev. B, 48, No. 1, 22–33 (1993).
  10. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, and M. A. Iliina, Mater. Phys. Mech., 42, No. 4, 380–388 (2019).
  11. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, and M. D. Starostenkov, Int. J. Mater. Res., 108, No. 10, 785–790 (2017).
  12. G. M. Poletaev and M. D. Starostenkov, Tech. Phys. Lett., 29, No. 6, 454–455 (2003).
  13. G. M. Poletaev and I. V. Zorya, Tech. Phys. Let., 46, No. 6, 575–578 (2020).
  14. M. Ruda, D. Farkas, and G. Garcia, Comput. Mater. Sci., 45, 550–560 (2009).
  15. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys., 103, 083504 (2008).
  16. M. A. San Miguel and J. F. Sanz, Phys. Rev. B, 58, 2369–2371 (1998).
  17. A. Ovid'ko and A.G. Sheinerman, Rev. Adv. Mater. Sci., 6, No. 1, 41–47 (2004).
  18. Y. Zhou, U. Erb, K. T. Aust, and G. Palumbo, Scripta Mater., 48, 825–830 (2003).
  19. D. Prokoshkina, V. A. Esin, G. Wilde, and S. V. Divinski, Acta Mater., 61, 5188–5197 (2013).
  20. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, et al., J. Exp. Theor. Phys., 128, No. 1, 88–93 (2019).
  21. M. A. Shtremel’, Strength of Alloys. Part 1. Lattice Defects [in Russian]. Metallurgiya, Moscow (1982).
  22. V. B. Vykhodets, T. E. Kurennykh, A. S. Lakhtin, and A. Ya. Fishman, Solid State Phenom., 138, 119–132 (2008).