Examples



mdbootstrap.com



 
Статья
2020

Synthesis of Stearyl Methacrylate–Glycidyl Methacrylate Copolymers and Their Use as Multifunctional Additives to Diesel Fuel


M. V. PavlovskayaM. V. Pavlovskaya, I. P. KriulichevI. P. Kriulichev, D. F. GrishinD. F. Grishin
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220090049
Abstract / Full Text

Stearyl methacrylate–glycidyl methacrylate copolymers were synthesized by controlled atom transfer radical polymerization. These copolymers can be used as multifunctional additives improving the low-temperature properties and thermal oxidation resistance of diesel fuel. The additives synthesized well compete in depressant properties with commercial imported additives and surpass some of them in the effect on the thermal oxidation resistance of hydrotreated diesel fuel of Euro-5 class, appreciably decelerating the fuel oxidation.

Author information
  • Lobachevsky University, 603950, Nizhny Novgorod, RussiaM. V. Pavlovskaya, I. P. Kriulichev & D. F. Grishin
References
  1. Ivchenko, P.V. and Nifant’ev, I.E., Polym. Sci., Ser. A, 2018, vol. 60, no. 5, pp. 577–593. https://doi.org/10.1134/S0965545X18050061
  2. Grishin, D.F., Petrol. Chem., 2017, vol. 57, no. 5, pp. 813–825. https://doi.org/10.1134/S0965544117100097
  3. Danilov, A.M., Petrol. Chem., 2015, vol. 55, no. 3, pp. 169–179. https://doi.org/10.7868/S0028242115030028
  4. Tang, W., Kwak, Y., Braunecker, W., Tsarevsky, N.V., Coote, M.L., and Matyjaszewski, K., J. Am. Chem. Soc., 2008, vol. 130, no. 32, pp. 10702–10713. https://doi.org/10.1021/ja802290a
  5. Simanskaya, K.Yu., Grishin, I.D., and Grishin, D.F., Russ. J. Appl. Chem., 2016, vol. 89, no. 7, pp. 1119–1125. https://doi.org/10.1134/S1070427216070119
  6. Simanskaya, K.Yu., Grishin, I.D., Pavlovskaya, M.V., and Grishin, D.F., Polym. Sci., Ser. B, 2019, vol. 61, no. 2, pp. 155–162. https://doi.org/10.1134/S1560090419020118
  7. Grishin, D.F. and Grishin, I.D., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, pp. 2021–2028. https://doi.org/10.1134/S1070427211120019
  8. Anastasaki, A., Nikolaou, V., Nurumbetov, G., Wilson, P., Kempe, K., Quinn, J.F., Davis, T.P., Whittaker, M.R., and Haddleton, D.M., Chem. Rev., 2016, vol. 116, no. 3, pp. 835–877. https://doi.org/10.1021/acs.chemrev.5b00191
  9. Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies, Matyjaszewski, K., Gao, H., Sumerlin, B.S., and Tsarevsky, N.V., Eds., Washington: Am. Chem. Soc., 2018.
  10. Krys, P. and Matyjaszewski, K., Eur. Polym. J., 2017, vol. 89, no. 4, pp. 482–523. https://doi.org/10.1016/j.eurpolymj.2017.02.034
  11. Ezzah, M. Muzammil, Anzar, Khan, and Stuparu, C., RSC Adv., 2017, vol. 88, no. 7, pp. 55874–55884. https://doi.org/10.1039/C7RA11093F
  12. Tsarevsky, N.V., Sidi, A.B., and Matyjaszewski, K., Macromolecules, 2007, vol. 40, no. 13, pp. 4439–4445. https://doi.org/10.1021/ma070705m
  13. Patent RU 2378323, publ. 2008.
  14. Bashkatova, S.T., Vinokurov, V.A., Grishina, I.N., and Egorkina, Yu.B., Petrol. Chem., 2011, vol. 51, no. 5, pp. 363–369. https://doi.org/10.1134/S0965544111030030
  15. Gaidar, S.M., Khim. Tekhnol. Topl. Masel, 2010, no. 6, pp. 16–20.
  16. Kuramshin, E.M. and Imashev, U.B., Bashk. Khim. Zh., 2011, vol. 18, no. 2, pp. 15–20.