Статья
2018

Efficiency of Pyrrole Electropolymerization under Various Conditions


O. I. Istakova O. I. Istakova , D. V. Konev D. V. Konev , T. O. Medvedeva T. O. Medvedeva , E. V. Zolotukhina E. V. Zolotukhina , M. A. Vorotyntsev M. A. Vorotyntsev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518130190
Abstract / Full Text

The electrooxidative polymerization of pyrrole on the surface of a glassy carbon electrode was studied, while varying the solvent, the type and concentration of supporting electrolyte, redox mediator addition to the polymerization medium, and hydrodynamic conditions. The efficiency of polymerization was determined as the ratio of the charge of the redox response of the polymer film under the standard conditions to the total charge of film formation in the monomer solution. The above factors were varied to determine the conditions that allow minimization of the ratio in order to obtain the highest yield of the polymer product. This was achieved by using a combination of a redox mediator addition with active stirring of solution.

Author information
  • Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432, Russia

    O. I. Istakova, D. V. Konev, E. V. Zolotukhina & M. A. Vorotyntsev

  • Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia

    O. I. Istakova, D. V. Konev & M. A. Vorotyntsev

  • Moscow State University, Moscow, 119991, Russia

    T. O. Medvedeva, E. V. Zolotukhina & M. A. Vorotyntsev

  • ICMUB, UMR 6302 CNRS-Université de Bourgogne-Franche-Comté, Dijon, France

    M. A. Vorotyntsev

References
  1. Malev, V.V., Kondratiev, V.V., and Timonov, A.M., Polimer-modifitsirovannye elektrody (Polymer-Modified Electrodes), St. Petersburg: Nestor-History, 2012.
  2. Skotheim, T.A. and Reynolds, J.R., Handbook of Conducting Polymers, Boca Raton: CRC Press, 2007, p. 1693.
  3. Heinze, J., Electronically conducting polymers, in Topics in Current Chemistry, Steckhan, E., Ed., Berlin: Springer-Verlag Berlin Heidelberg, 1990, p. 1.
  4. Vorotyntsev, M.A. and Vasilyeva, S.V., Metallocenecontaining conjugated polymers, Adv. Colloid Interface Sci., 2008, vol. 139, no. 1, p. 97.
  5. Vorotyntsev, M.A., Zinovyeva, V.A., and Konev, D.V., Mechanisms of Electropolymerization and Redox Activity: Fundamental Aspects, in: Electropolymerization: Concepts, Materials and Applications, Cosnier, S. and Karyakin, A.A., Eds., Weinheim: WileyVCH, 2010, p. 27–50.
  6. Podlovchenko, B.I. and Andreev, V.N., Electrocatalysis on polymer-modified electrodes, Russ. Chem. Rev., 2002, vol. 71, no. 10, p. 837.
  7. Machida, S., Miyata, S., and Techagumpuch, A., Chemical synthesis of highly electrically conductive polypyrrole, Synth. Met., 1989, vol. 31, no. 3, p. 311.
  8. Kang, E.T., Neoh, K.G., Ong, Y.K., Tan, K.L., and Tan, B.T.G., X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron(III) salts, Macromolecules, 1991, vol. 24, no. 10, p. 2822.
  9. Saafan, S.A., El-Nimr, M.K., and El-Ghazzawy, E.H., Study of dielectric properties of polypyrrole prepared using two different oxidizing agents, J. Appl. Polym. Sci., 2006, vol. 99, no. 6, p. 3370.
  10. Morita, M., Komaguchi, K., Tsutsumi, H., and Matsuda, Y., Electrosynthesis of poly(p-phenylene) films and their application to the electrodes of rechargeable batteries, Electrochim. Acta, 1992, vol. 37, no. 6, p. 1093.
  11. Yonezawa, S., Kanamura, K., and Takehara, Z., Discharge and charge characteristics of polyaniline prepared by electropolymerization of aniline in nonaqueous solvent, J. Electrochem. Soc., 1993, vol. 140, no. 3, p. 629.
  12. Nazarova, I.B., Krinichnyi, V.I., and Goldenberg, L.M., Schottky diodes based on poly(p-phenylene) and poly(1,4-dipyrrolobenzene), Synth. Met., 1993, vol. 53, no. 3, p. 399.
  13. McCoy, C.H. and Wrighton, M.S., Potential-dependent conductivity of conducting polymers yields opportunities for molecule-based devices: a microelectrochemical push-pull amplifier based on two different conducting polymer transistors, Chem. Mater., 1993, vol. 5, no. 7, p. 914.
  14. Morita, M. and Hashida, I., Enhanced electrochromic stability of polyaniline in polyaniline-matrix polymer composite films in aprotic medium, Macromol. Chem. Phys., 1992, vol. 193, no. 4, p. 921.
  15. Morita, M., Multicolor electrochromic behavior of polyaniline composite films combined with polythiophene and poly(3-methylthiophene) films, Macromol. Chem. Phys., 1993, vol. 194, no. 8, p. 2361.
  16. Genies, E.M. and Marchesiello, M., Conducting polymers for biosensors, application to new glucose sensors GOD entrapped into polypyrrole, GOD adsorbed on poly(3-methylthiophene), Synth. Met., 1993, vol. 57, no. 1, p. 3677.
  17. Nishizawa, M., Miwa, Y., Matsue, T., and Uchida, I., Surface pretreatment for electrochemical fabrication of ultrathin patterned conducting polymers, J. Electrochem. Soc., 1993, vol. 140, no. 6, p. 1650.
  18. Girard, F., Ye, S., Laperriere, G., and Belanger, D., Polypyrrole film electrodes electrochemically doped with tetrathiomolybdate anions: preparation and characterization, J. Electroanal. Chem., 1992, vol. 334, nos. 1–2, p. 35.
  19. Miller, J.S., Conducting polymers—materials of commerce, Adv. Mater., 1993, vol. 5, no. 9, p. 671.
  20. Medvedeva, T.O. and Istakova, O.I., The influence of electropolymerization conditions on the preparation of polypyrrole in powder form, Tez. dokl. mezhdunar. molodezhnogo nauchnogo foruma “Lomonosov-2018” (Abstracts of Papers, Int. Scientific Conf. of Students and Young Scientists “Lomonosov-2018”), Moscow: MAKS Press, 2018, https://lomonosov-msu.ru/archive/Lomonosov_2018/data/section_12_13672.htm
  21. Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Electrochemistry of conducting polymers: persistent models and new concepts, Chem. Rev., 2010, vol. 110, no. 8, p. 4724.
  22. Gvozdenović, M.M., Jugović, B.Z., Stevanović, J.S., and Grgur, B.N., Electrochemical synthesis of electroconducting polymers, Hem. Ind., 2014, vol. 68, no. 6, p. 673.
  23. Müllen, K. and Wegner, G., Electronic materials: the oligomer approach, Verlag: WILEY-VCH, 2008.
  24. Zhou, M. and Heinze, J., Electropolymerization of pyrrole and electrochemical study of polypyrrole. 2. Influence of acidity on the formation of polypyrrole and the multipathway mechanism, J. Phys. Chem. B, 1999, vol. 103, no. 40, p. 8443.
  25. Meerholz, K. and Heinze, J., Influence of chain length and defects on the electrical conductivity of conducting polymers, Synth. Met., 1993, vol. 57, nos. 2–3, p. 5040.
  26. Bof Bufon, C.C., Vollmer, J., Heinzel, T., Espindola, P., John, H., and Heinze, J., Relationship between chain length, disorder, and resistivity in polypyrrole films, J. Phys. Chem. B., 2005, vol. 109, no. 41, p. 19191.
  27. Otero, T.F. and Boyano, I., Comparative study of conducting polymers by the ESCR model, J. Phys. Chem. B., 2003, vol. 107, no. 28, p. 6730.
  28. Otero, T.F. and De Larreta, E., Electrochemical control of the morphology, adherence, appearance and growth of polypyrrole films, Synth. Met., 1988, vol. 26, no. 1, p. 79.
  29. Diaz, A.F., Castillo, J.I., Logan, J.A., and Lee, W.Y., Electrochemistry of conducting polypyrrole films, J. Electroanal. Chem. Interfac. Electrochem., 1981, vol. 129, nos. 1–2, p. 115.
  30. Asavapiriyanont, S., Chandler, G.K., Gunawardena, G.A., and Plletcher, D., The electrodeposition of polypyrrole films from aqueous solutions, J. Electroanal. Chem. Interfac. Electrochem., 1984, vol. 177, nos. 1–2, p. 229.
  31. Scharifker, B.R., Garcia-Pastoriza, E., and Marino, W., The growth of polypyrrole films on electrodes, J. Electroanal. Chem. Interfac. Electrochem., 1991, vol. 300, nos. 1–2, p. 85.
  32. Yamaura, M., Sato, K., and Hagiwara, T., Effect of counter-anion exchange on electrical conductivity of polypyrrole films, Synth. Met., 1991, vol. 41, nos. 1–2, p. 439.
  33. Vernitskaya, T.V. and Efimov, O.N., Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russ. Chem. Rev., 1997, vol. 66, no. 5, p. 443.
  34. Zhou, M. and Heinze, J., Electropolymerization of Pyrrole and Electrochemical Study of Polypyrrole. 3. Nature of “Water Effect” in Acetonitrile, J. Phys. Chem. B., 1999, vol. 103, no. 40, p. 8451.
  35. Beck, F. and Oberst, M., Electrocatalytic deposition of polypyrrole in the presence of bromide, J. Appl. Electrochem., 1992, vol. 22, no. 4, p. 332.