Статья
2019

The Nature of Charge Carriers in Polymeric Complexes of Nickel with Schiff Bases Containing Electron-Withdrawing Substituents


E. A. Dmitrieva E. A. Dmitrieva , I. A. Chepurnaya I. A. Chepurnaya , M. P. Karushev M. P. Karushev , A. M. Timonov A. M. Timonov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110041
Abstract / Full Text

The data on polymeric complexes of nickel with salen-type Schiff bases containing electron-withdrawing nitro groups in ligand’s aromatic fragments are acquired by an in situ technique based on collecting electron paramagnetic resonance spectra simultaneously with absorption spectra in the UV, visible, and near IR regions in the course of oxidation-reduction of a polymer film on the surface of an optically transparent electrode under conditions of cyclic voltammetry. Based on the combined analysis of spectroscopic and electrochemical data, it is shown that as the potential of the polymer-modified electrode shifts in the positive region, the different types of charge carriers successively appear in the system (phenoxyl radical cations, radical pairs, and dications). The results obtained suggest that the positive charge can be delocalized either between aromatic rings in monomer fragments or between fragments of neighboring polymer chains.

Author information
  • Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research (IFW Dresden), 01069, Dresden, Germany

    E. A. Dmitrieva

  • Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

    I. A. Chepurnaya, M. P. Karushev & A. M. Timonov

References
  1. Fatibello-Filho, O., Dockal, E.R., Marcolino-Junior, L.H., and Teixeira, M.F.S., Electrochemical modified electrodes based on metal-salen complexes, Anal. Lett., 2007, vol. 40, p. 1825. https://doi.org/10.1080/00032710701487122
  2. Nunes, M., Araújo, M., Fonseca, J., Moura, C., Hillman, A.R., and Freire, C., High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 14231. https://doi.org/10.1021/acsami.6b01977
  3. Smirnova, E.A., Besedina, M.A., Karushev, M.P., Vasil’ev, V.V., and Timonov, A.M., Photogalvanic and photovoltaic effects in systems based on metal complexes of Schiff bases, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1088. https://doi.org/10.1134/S0036024416050319
  4. Dahm, C.E. and Peters, D.G., Catalytic reduction of α, ω-dihaloalkanes with nickel(I) salen as a homogeneous-phase and polymer-bound mediator, J. Electroanal. Chem., 1996, vol. 406, p. 119. https://doi.org/10.1016/0022-0728(95)04453-1
  5. De Castro, B., Ferreira, R., Freire, C., Garca, H., Palomares, E.J., and Sabater, M.J., Photochemistry of nickel salen based complexes and relevance to catalysis, New J. Chem., 2002, vol. 26, p. 405. https://doi.org/10.1039/b108436d
  6. Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., and Levin, O.V., Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties, Electrochim. Acta, 2017, vol. 225, p. 378. https://doi.org/10.1016/j.electacta.2016.12.135
  7. Chepurnaya, I.A., Logvinov, S.A., Karushev, M.P., Timonov, A.M., and Malev, V.V., Modification of supercapacitor electrodes with polymer metallocomplexes: methods and results, Russ. J. Electrochem., 2012, vol. 48, p. 538. https://doi.org/10.1134/S1023193512040040
  8. Yan, G., Li, J., Zhang, Y., Gao, F., and Kang, F., Electrochemical polymerization and energy storage for poly[Ni(Salen)] as supercapacitor electrode material, J. Phys. Chem. C, 2014, vol. 118, p. 9911. https://doi.org/10.1021/jp500249t
  9. Karushev, M.P., Belous, S.A., Lavrova, T.S., Chepurnaya, I.A., Timonov, A.M., and Kogan, S., Russian Patent 2575194, 2014.
  10. O’Meara, C., Karushev, M.P., Polozhentceva, Iu.A., Dharmasena, S., Cho, H., Yurkovich, B.J., Kogan, S., and Kim, J.-H., Nickel-salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 525. https://doi.org/10.1021/acsami.8b13742
  11. Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Malev, V.V., and Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study, J. Solid State Electrochem., 2015, vol. 19, p. 453. https://doi.org/10.1007/s10008-014-2619-4
  12. Krasikova, S.A., Besedina, M.A., Karushev, M.P., Dmitrieva, E.A., and Timonov, A.M., In situ Electrochemical Microbalance Studies of Polymerization and Redox Processes in Polymeric Complexes of Transition Metals with Schiff Bases, Russ. J. Electrochem., 2010, vol. 46, p. 218. https://doi.org/10.1134/S102319351002014X
  13. Vilas-Boas, M., Santos, I.C., Henderson, M.J., Freire, C., Hillman, A.R., and Vieil, E., Electrochemical behavior of a new precursor for the design of poly[Ni(salen)]-based modified electrodes, Langmuir, 2003, vol. 19, p. 7460. https://doi.org/10.1021/la034525r
  14. Dmitrieva, E., Rosenkranz, M., Danilova, J.S., Smirnova, E.A., Karushev, M.P., Chepurnaya, I.A., and Timonov, A.M., Radical formation in polymeric nickel complexes with N2O2 Schiff base ligands: An in situ ESR and UV-vis-NIR spectroelectrochemical study, Electrochim. Acta, 2018, vol. 283, p. 1742. https://doi.org/10.1016/j.electacta.2018.07.131
  15. Novozhilova, M.V., Smirnova, E.A., Polozhentseva, J.A., Danilova, J.A., Chepurnaya, I.A., Karushev, M.P., Malev, V.V., and Timonov, A.M., Multielectron redox processes in polymeric cobalt complexes with N2O2 Schiff base ligands, Electrochim. Acta, 2018, vol. 282, p. 105–115. https://doi.org/10.1016/j.electacta.2018.06.030
  16. Malev, V.V., Levin, O.V., and Timonov, A.M., Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films, Electrochim. Acta, 2013, vol. 108, p. 313. https://doi.org/10.1016/j.electacta.2013.06.101
  17. Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., and Malev, V.V., Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases, Electrochim. Acta, 2013, vol. 109, p. 153. https://doi.org/10.1016/j.electacta.2013.07.070
  18. Vilas-Boas, M., Freire, C., de Castro, B., Christensen, P.A., and Hillman, A.R., New insights into the structure and properties of electroactive polymer films derived from [Ni(salen)], Inorg. Chem., 1997, vol. 36, p. 4919, https://doi.org/10.1021/ic970467j
  19. Vilas-Boas, M., Freire, C., de Castro, B., Christensen, P.A., and Hillman, A.R., Spectroelectrochemical characterization of poly[Ni(saltMe)]-modified electrodes, Chem. Eur. J., 2001, vol. 7, p. 139. https://doi.org/10.1002/1521-3765(20010105)7:1<139::AID-CHEM139>3.0.CO;2-Q
  20. Tedim, J., Patricio, S., Fonseca, J., Magalhaes, A.L., Moura, C., Hillman, A.R., and Freire, C., Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level, Synth. Metals, 2011, vol. 161, p. 680. https://doi.org/10.1016/j.synthmet.2011.01.014
  21. Clarke, R.M., Herasymchuk, K., and Storr, T., Electronic structure elucidation in oxidized metal-salen complexes, Coord. Chem. Rev., 2017, vol. 352, p. 67. https://doi.org/10.1016/j.ccr.2017.08.019
  22. Rotthaus, O., Jarjayes, O., Del Valle, C.P., Philouze, C., and Thomas, F., A versatile electronic hole in one-electron oxidized NiIIbis-salicylidene phenylenediamine complexes, Chem. Commun., 2007, vol. 43, p. 4462. https://doi.org/10.1039/B710027B
  23. Chiang, L., Kochem, A., Jarjayes, O., Dunn, T.J., Vezin, H., Sakaguchi, M., Ogura, T., Orio, M., Shimazaki, Y., Thomas, F., and Storr, T., Radical localization in a series of symmetric NiII complexes with oxidized salen ligands, Chem. Eur. J., 2012, vol. 18, p. 14117. https://doi.org/10.1002/chem.201201410
  24. Chiang, L., Herasymchuk, K., Thomas, F., and Storr, T., Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes, Inorg. Chem., 2015, vol. 54, p. 5970. https://doi.org/10.1021/acs.inorgchem.5b00783
  25. Kurchavov, D.S., Karushev, M.P., and Timonov, A.M., New nickel(II) complexes with tetradentate Schiff bases containing electron-acceptor substituents, Russ. J. Gen. Chem., 2018, vol. 88, p. 1553. https://doi.org/10.1134/S1070363218070332
  26. Neudeck, A., Petr, A., and Dunsch, L., The redox mechanism of polyaniline studied by simultaneous ESR-UV-vis spectroelectrochemistry, Synth. Met., 1999, vol. 107, p. 143. https://doi.org/10.1016/S0379-6779(99)00135-6
  27. Shimazaki, Y., Yajima, T., Shiraiwa, T., and Yamauchi, O., Zinc(II)-phenoxyl radical complexes: dependence on complexation properties of Zn-phenolate species, Inorg. Chim. Acta, 2009, vol. 362, p. 2467. https://doi.org/10.1016/j.ica.2008.11.006