Статья
2021

The Effect of the Lithium Borate Surface Layer on the Electrochemical Properties of the Lithium-Ion Battery Positive Electrode Material LiNi1/3Mn1/3Co1/3O2


K. V. Nefedova K. V. Nefedova , V. D. Zhuravlev V. D. Zhuravlev , A. M. Murzakaev A. M. Murzakaev , V. V. Yagodin V. V. Yagodin , M. V. Kuznetsov M. V. Kuznetsov , E. Yu. Evshchik E. Yu. Evshchik , V. M. Skachkov V. M. Skachkov , O. V. Bushkova O. V. Bushkova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521100104
Abstract / Full Text

The electrochemical behavior of layer-structure LiNi1/3Mn1/3Сo1/3O2 solid solution, a positive electrode material of lithium-ion battery, with surface protective layer of amorphous lithium borate is studied. The protective coating is prepared by the eutectic incongruent melting at 750°C of a pre-synthesized compound Li3BO3, mechanically mixed with LiNi1/3Mn1/3Сo1/3O2 powder. The glassy lithium borate 3Li2O∙B2O3 is found to form island-like structures presumably localized in electrochemically active regions of the active-material particles’ surface. The optimal lithium borate content, which makes possible the LiNi1/3Mn1/3Сo1/3O2 stable cycling at 0.5 C rate with the maximum discharge capacity, is found to be equal to 1 wt %.

Author information
  • Institute of Solid State Chemistry, Urals Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    K. V. Nefedova, V. D. Zhuravlev, V. V. Yagodin, M. V. Kuznetsov, V. M. Skachkov & O. V. Bushkova

  • Institute of Electrophysics, Urals Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    A. M. Murzakaev

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia

    E. Yu. Evshchik

References
  1. Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., Comparative issues of cathode materials for Li-Ion batteries, Inorganics, 2014, vol. 20, p. 132. https://doi.org/10.3390/inorganics2010132
  2. Schmuch, R., Wagner, R., Hörpel, G., Placke, T., and Winter, M., Performance and cost of materials for lithium-based rechargeable automotive batteries, Nature Energy, 2018, vol. 3, no. 4, p. 267. https://doi.org/10.1038/s41560-018-0107-2
  3. Tarascon, J.-M., Key challenges in future Li-battery research, Phil. Trans. R. Soc. A, 2010, vol. 368, p. 3227. https://doi.org/10.1098/rsta.2010.0112
  4. Zuo, D., Tian, G., Li, X., Chen, D., and Shu K., Recent progress in surface coating of cathode materials for lithium ion secondary batteries, J. Alloys and Compounds, 2017, vol. 706, p. 24. https://doi.org/10.1016/j.jallcom.2017.02.230
  5. Blomgren, G.E., The development and future of lithium ion batteries, J. Electrochem. Soc., 2016, vol. 164, no. 1, p. A5019. https://doi.org/10.1149/2.0251701jes
  6. Mauger, A. and Julien, C.M., Critical review on lithium-ion batteries: are they safe? Sustainable?, Ionics, 2017, vol. 23, no. 8. p. 1933. https://doi.org/10.1007/s11581-017-2177-8
  7. Schipper, F. and Aurbach, D., A brief review: Past, present and future of lithium ion batteries, Russ. J. Electrochem., 2016, vol. 52, no. 12, p. 1095. https://doi.org/10.1134/S1023193516120120
  8. Xu, J., Lin, F., Doe, M.M., and Tong, W., A review of Ni-based layered oxides for rechargeable Li-ion batteries, J. Mater. Chem. A, 2017, vol. 5, p. 874. https://doi.org/10.1039/c6ta07991a
  9. Dobrovolsky, Yu.A., Bushkova, O.V., Evshchik, E.Yu., Kayumov, R.R., Korchun, A.V., Drozhzhin, O.A., and Antipov, A.E., Lithium-Ion Batteries (in Russia), Moscow: Mendeleev Univ. Chem. Technol., 2020.
  10. Armand, M., Axmann, P., Bresser, D., Copley, M., Edström, K., Ekberg, C., Guyomard, D., Lestriez, B., Novaґk, P., Petranikova, M., Porcher, W., Trabesinger, S., Wohlfahrt-Mehrens, M., and Zhang, H., Lithium-ion batteries—Current state of the art and anticipated developments, J. Power Sources, 2020, vol. 479, p. 228708. https://doi.org/10.1016/j.jpowsour.2020.228708
  11. Ding, Y., Cano, Z.P., Yu, A., Lu, J., and Chen, Z., Automotive Li-Ion Batteries: Current Status and Future Perspectives, Electrochem. Energ. Rev., 2019, vol. 2, p. 1. https://doi.org/10.1007/s41918-018-0022-z
  12. Pillot, C., The rechargeable battery market and main trends 2016–2025, Proc. 33rd Ann. Interval Battery Seminar & Exhibit, Fort Lauderdale, FL, USA, 2017, vol. 20.
  13. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Materials today, 2015, vol. 18, no. 5, p. 252. https://doi.org/10.1016/j.mattod.2014.10.040
  14. Daniel, C., Mohanty, D., Li, J., and Wood, D.L., Cathode materials review, AIP Conference Proceedings, 2014, vol. 26, p. 1597. https://doi.org/10.1063/1.4878478
  15. Kim, H., Oh, S.-M., Scrosati, B., and Sun, Y.-K., High-performance electrode materials for lithium-ion batteries for electric vehicles, Advances in Battery Technologies for Electric Vehicles, 2015, p. 191. https://doi.org/10.1016/b978-1-78242-377-5.00009-1
  16. Aurbach, D., Gamolsky, K., Markovsky, B., Salitra, G., Gofer, Y., Heider, U., Oesten, R., and Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M = Ni, Mn), J. Electrochem. Soc., 2000, vol. 147, p. 1322. https://doi.org/10.1149/1.1393357
  17. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, p. 11503. https://doi.org/10.1021/cr500003w
  18. Mauger, A. and Julien, C., Surface modifications of electrode materials for lithium-ionbatteries: status and trends, Ionics, 2014, vol. 20, p. 751. https://doi.org/10.1007/s11581-014-1131-2
  19. Bensalah, D. and Dawood, H., Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries, J. Material Sci. Eng., 2016, vol. 5, p. 1000258. https://doi.org/10.4172/2169-0022.1000258
  20. Li, C., Zhang, H.P., Fu, L.J., Liu, H., Wu, Y.P., Rahm, E., Holze, R., and Wu, H.Q., Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta, 2006, vol. 51, p. 3872. https://doi.org/10.1016/j.electacta.2005.11.015
  21. Makhonina, E.V., Maslennikova, L.S., Volkov, V.V., Medvedeva, A.E., Rumyantsev, A.M., Koshtyal, Yu.M., Maximov, M.Yu., Pervov, V.S., and Eremenko, I.L., Li-rich and Ni-rich transition metal oxides: Coating and core–shell structures, Appl. Surface Sci., 2019, vol. 474, no. 30, p. 25. https://doi.org/10.1016/j.apsusc.2018.07.159
  22. Machida, N., Kashiwagi, J., Naito, M., and Shigematsu, T., Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials, Solid State Ionics, 2012, vol. 225, p. 354. https://doi.org/10.1016/j.ssi.2011.11.026
  23. Huang, Y., Chen, J., Cheng, F., Wan, W., Liu, W., Zhou, H., and Zhang, X., A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process, J. Power Sources, 2010, vol. 195, no. 24, p. 8267. https://doi.org/10.1016/j.jpowsour.2010.07.021
  24. Wu, F., Wang, M., Su, Y., Bao, L., and Chen, S., Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating, Electrochimica Acta, 2009, vol. 54, no. 27, p. 6803. https://doi.org/10.1016/j.electacta.2009.06.075
  25. Li, X., He, W., Chen, L., Guo, W., Chen, J., and Xiao, Z., Hydrothermal synthesis and electrochemical performance studies of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries, Ionics, 2013, vol. 20, no. 6, p. 833. https://doi.org/10.1007/s11581-013-1041-8
  26. Hu, S.-K., Cheng, G.-H., Cheng, M.-Y., Hwang, B.-J., and Santhanam, R., Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, J. Power Sources, 2009, vol. 188, no. 2, p. 564. https://doi.org/10.1016/j.jpowsour.2008.11.113
  27. Riley, L.A., Van Atta, S., Cavanagh, A.S., Yan, Y., George, S.M., Liu, P., and Lee, S.-H., Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material, J. Power Sources, 2011, vol. 196, no. 6, p. 3317. https://doi.org/10.1016/j.jpowsour.2010.11.124
  28. Li, J., Fan, M., He, X., Zhao, R., Jiange, C., and Wan, C., TiO2 coating of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries, Ionics, 2006, vol. 12, no. 3, p. 215. https://doi.org/10.1007/s11581-006-0034-2
  29. Kim, Y., Kim, H.S., and Martin, S.W., Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries, Electrochim. Acta, 2006, vol. 52, no. 3, p. 1316. https://doi.org/10.1016/j.electacta.2006.07.033
  30. Li, D., Kato, Y., Kobayakawa, K., Noguchi, H., and Sato, Y., Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating, J. Power Sources, 2006, vol. 160, no. 2, p. 1342. https://doi.org/10.1016/j.jpowsour.2006.02.080
  31. Wang, W., Yin, Z., Wang, Z., Li, X., and Guo, H., Effect of heat-treatment on electrochemical performance of Li3VO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials, Mater. Letters, 2015, vol. 160, p. 298. https://doi.org/10.1016/j.matlet.2015.07.160
  32. Wang, C., Chen, L., Zhang, H., Yang, Y., Wang, F., Yin, F., and Yang, G., Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries, Electrochim. Acta, 2014, vol. 119, p. 236. https://doi.org/10.1016/j.electacta.2013.12.038
  33. Li, D., Sasaki, Y., Kobayakawa, K., Noguchi, H., and Sato, Y., Preparation, morphology and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 with LiF addition, Electrochim. Acta, 2006, vol. 52, no. 2, p. 643. https://doi.org/10.1016/j.electacta.2006.05.044
  34. Hashem, A.M.A., Abdel-Ghany, A.E., Eid, A.E., Trottier, J., Zaghib, K., Mauger, A., and Julien, C.M., Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery, J. Power Sources, 2011, vol. 196, no. 20, p. 8632. https://doi.org/10.1016/j.jpowsour.2011.06.039
  35. Eddrief, M., Dzwonkowski, P., Julien, C., and Balkanski, M., The ac conductivity in B2O3–Li2O films, Solid State Ionics, 1991, vol. 45, no. 1–2, p. 77. https://doi.org/10.1016/0167-2738(91)90105-K
  36. Ito, Y., Miyauchi, K., and Oi, T., Ionic conductivity of Li2O–B2O3 thin films, J. Non-Crystalline Solids, 1983, vol. 57, no. 3, p. 389. https://doi.org/10.1016/0022-3093(83)90426-X
  37. Horopanitis, E.E., Perentzis, G., Pavlidou, E., and Papadimitriou, L., Electrical properties of lithiated boron oxide fast-ion conducting glasses, Ionics, 2003, vol. 9, p. 88. https://doi.org/10.1007/BF02376543
  38. Amatucci, G., Blyr, A., Sigala, C., Alfonse, P., and Tarascon, J., Surface treatments of Li1 + xMn2 – xO4 spinels for improved elevated temperature performance, Solid State Ionics, 1997, vol. 104, no. 1–2, p. 13. https://doi.org/10.1016/S0167-2738(97)00407-4
  39. Dou, J., Kang, X., Wumaier, T., Yu, H., Hua, N., Han, Y., and Xu, G., Effect of lithium boron oxide glass coating on the electrochemical performance of LiNi1/3Co1/3Mn1/3O2, J. Solid State Electrochem., 2011, vol. 16, no. 4, p. 1481. https://doi.org/10.1007/s10008-011-1550-1
  40. Jinlian, L., Xianming, W. U., Shang, C., Jianben, C., and Zeqiang, H., Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Bulletin of Materials Sci., 2013, vol. 36, no. 4, p. 687. https://doi.org/10.1007/s12034-013-0513-9
  41. Chan, H.-W., Duh, J.-G., and Sheen, S.-R., Electrochemical performance of LBO-coated spinel lithium manganese oxide as cathode material for Li-ion battery, Surface and Coatings Technology, 2004, vol. 188–189, p. 116. https://doi.org/10.1016/j.surfcoat.2004.08.065
  42. Şahan, H., Göktepe, H., Patat, Ş., Ülgen, A., and Sahan, H., The effect of LBO coating method on electrochemical performance of LiMn2O4 cathode material, Solid State Ionics, 2008, vol. 178, no. 35–36, p. 1837. https://doi.org/10.1016/j.ssi.2007.11.024
  43. Peng, W., Jiao, L., Gao, H., Qi, Z., Wang, Q., Du, H., Si, Y.C., Wang, Y.J., and Yuan, H.T., A novel sol–gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material, J. Power Sources, 2011, vol. 196, no. 5, p. 2841. https://doi.org/10.1016/j.jpowsour.2010.10.065
  44. Ying, J., Wan, C., and Jiang, C., Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries, J. Power Sources, 2001, vol. 102, nos. 1–2, p. 162. https://doi.org/10.1016/S0378-7753(01)00795-9
  45. Chen, S., Chen, L., Li, Y., Su, Y., Lu, Y., Bao, L., Wang, J., Wang, M., and Wu, F., Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 10, p. 8641. https://doi.org/10.1021/acsami.6b13995
  46. Tan, S., Wang, L., Bian, L., Xu, J., Ren, W., Hu, P., and Chang, A., Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification, J. Power Sources, 2015, vol. 277, p. 139. https://doi.org/10.1016/j.jpowsour.2014.11.149
  47. Zhu, L., Bao, C., Xie, L., Yang, X., and Cao, X., Review of synthesis and structural optimization of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries applications, J. Alloys Compounds, 2020, vol. 831, p. 154864. https://doi.org/10.1016/j.jallcom.2020.154864
  48. Ferreira, E.B., Lima, M.L., and Zanotto, E.D., DSC Method for Determining the Liquidus Temperature of Glass-Forming Systems, J. Amer. Ceramic Soc., 2010, vol. 93, no. 11, p. 3757. https://doi.org/10.1111/j.1551-2916.2010.03976.x
  49. Mathews, M.D., Tyagi, A.K., and Moorthy, P.N., High-temperature behaviour of lithium borates: Part I: Characterization and thermal stability, Thermochim. Acta, 1998, vol. 320, p. 89. https://doi.org/10.1016/S0040-6031(98)00403-1
  50. Pantyukhina, M.I., Zelyutin, G.V., Batalov, N.N., and Obrosov, V.P., Effect of substituting 6Li for 7Li on ionic conductivity of α-Li3BO3, Russ. J. Electrochem., 2000, vol. 36, p. 792. https://doi.org/10.1007/BF02757683
  51. Hirose, E., Kataoka, K., Nagata, H., Akimoto, J., Sasaki, T., Niwa, K., and Hasegawa, M., Lithium ionic conductivities of α-LiBO2 with two-dimensional Li–Li networks and γ-LiBO2 with three-dimensional ones synthesized under high pressure, J. Solid State Chem., 2019, vol. 274, p. 100. https://doi.org/10.1016/j.jssc.2019.02.045
  52. Zhuravlev, V.D., Pachuev, A.V., Nefedova, K.V., and Ermakova L.V., Solution-Combustion Synthesis of LiNi1/3Co1/3Mn1/3O2 as a Cathode Material for Lithium-Ion Batteries, Int. J. Self-Propagating High-Temperature Synthesis, 2018, vol. 27, no. 3, p. 154. https://doi.org/10.3103/S1061386218030147
  53. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, 1993, vol. 192, no. 1–2, p. 55. https://doi.org/10.1016/09214526(93)90108I
  54. Harada, T. and Hatton, T.A., Tri-lithium borate (Li3BO3); a new highly regenerable high capacity CO2 adsorbent at intermediate temperature, J. Mater. Chem. A, 2017, vol. 5, no. 42, p. 22224. https://doi.org/10.1039/c7ta06167f
  55. Shaju, K.M., Subba Rao, G.V., and Chowdari, B.V., Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta, 2002, vol. 48, no. 2, p. 145. https://doi.org/10.1016/s0013-4686(02)00593-5
  56. Hu, W., Zhang, C., Jiang, H., Zheng, M., Wu, Q.-H., and Dong, Q., Improving the electrochemistry performance of layer LiNi0.5Mn0.3Co0.2O2 material at 4.5 V cutoff potential using lithium metaborate, Electrochim. Acta, 2017, vol. 243, p. 105. https://doi.org/10.1016/j.electacta.2017.05.075