Examples



mdbootstrap.com



 
Статья
2022

Synthesis and structure of new europium(ɪɪɪ) and terbium(ɪɪɪ) coordination polymers with trans-1,4-cyclohexanedicarboxylic acid


P. A. DemakovP. A. Demakov, V. P. FedinV. P. Fedin
Российский химический вестник
https://doi.org/10.1007/s11172-022-3498-y
Abstract / Full Text

Two new metal-organic frameworks of composition [Eu2(phen)2Cl2(chdc)2] • 1.1DMF• •0.7diox (1•1.1DMF•0.7diox, phen is 1,10-phenanthroline, DMF is N,N-dimethyl-formamide, diox is dioxane) and [Tb2(phen)2Cl2(chdc)2] • 2diox • 2H2O (2 • 2diox • 2H2O) were synthesized using the conformationally flexible alicyclic ligand, trans-1,4-cyclohexane-dicarboxylic acid (H2chdc). The mononuclear complex [Tb(phen)2(DEF)(H2O)Cl2]Cl (3, DEF is N,N-diethylformamide) was also prepared. The structures of the reaction products were determined by single-crystal X-ray diffraction. The compositions and nature of the compounds 1 • 0.6DMF• 2.5H2O and 2 • 0.5diox • 4H2O, which were obtained after the separation of single crystals from the mother liquor, were confirmed by IR spectroscopy, elemental analysis, and thermogravimetric analysis. Both these compounds are composed of the binuclear units {Ln2(phen)2Cl2(O2CR)4} and are rare examples of the coordination of a halide anion to the LnIII ion in the metal-organic framework. The three-dimensional packing of the layers in the structures of 1 and 2 contains voids with a total volume of 35 and 32%, respectively.

Author information
  • Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 prosp. Akad. Lavrentieva, 630090, Novosibirsk, Russian FederationP. A. Demakov & V. P. Fedin
References
  1. X.-Y. Liu, W. P. Lustig, J. Li, ACS Energy Lett., 2020, 5, 2671; DOI: https://doi.org/10.1021/acsenergylett.0c01148.
  2. A. Kuznetsova, V. Matveevskaya, D. Pavlov, A. Yakunenkov, A. Potapov, Materials, 2020, 13, 2699; DOI: https://doi.org/10.3390/ma13122699.
  3. Z. Zhou, M. Vázquez-González, I. Willner, Chem. Soc. Rev., 2021, 50, 4541; DOI: https://doi.org/10.1039/D0CS01030H.
  4. Y. Zhao, H. Zeng, X.-W. Zhu, W. Lu, D. Li, Chem. Soc. Rev., 2021, 50, 4484; DOI: https://doi.org/10.1039/D0CS00955E.
  5. D. N. Dybtsev, K. P. Bryliakov, Coord. Chem. Rev., 2021, 437, 213845; DOI: https://doi.org/10.1016/j.ccr.2021.213845.
  6. M. I. Rogovoy, A. V. Tomilenko, D. G. Samsonenko, N. A. Nedolya, M. I. Rakhmanova, A. V. Artem’ev, Mendeleev Commun., 2020, 30, 728; DOI: https://doi.org/10.1016/j.mencom.2020.11.013.
  7. I. S. Antipin, M. V. Alfimov, V. V. Arslanov, V. A. Burilov, S. Z. Vatsadze, Ya. Z. Voloshin, K. P. Volcho, V. V. Gorbatchuk, Yu. G. Gorbunova, S. P. Gromov, S. V. Dudkin, S. Yu. Zaitsev, L. Ya. Zakharova, M. A. Ziganshin, A. V. Zolotukhina, M. A. Kalinina, E. A. Karakhanov, R. R. Kashapov, O. I. Koifman, A. I. Konovalov, V. S. Korenev, A. L. Maksimov, N. Zh. Mamardashvili, G. M. Mamardashvili, A. G. Martynov, A. R. Mustafina, R. I. Nugmanov, A. S. Ovsyannikov, P. L. Padnya, A. S. Potapov, S. L. Selektor, M. N. Sokolov, S. E. Solovieva, I. I. Stoikov, P. A. Stuzhin, E. V. Suslov, E. N. Ushakov, V. P. Fedin, S. V. Fedorenko, O. A. Fedorova, Yu. V. Fedorov, S. N. Chvalun, A. Yu. Tsivadze, S. N. Shtykov, D. N. Shurpik, M. A. Shcherbina, L. S. Yakimova, Russ. Chem. Rev., 2021, 90, 895; DOI: https://doi.org/10.1070/RCR5011.
  8. M. A. Shmelev, G. N. Kuznetsova, N. V. Gogoleva, F. M. Dolgushin, Yu. V. Nelyubina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Russ. Chem. Bull., 2021, 70, 830; DOI: https://doi.org/10.1007/s11172-021-3156-9.
  9. F. Saraci, V. Quezada-Novoa, P. R. Donnarumma, A. J. Howarth, Chem. Soc. Rev., 2020, 49, 7949; DOI: https://doi.org/10.1039/D0CS00292E.
  10. Y. M. Litvinova, Y. M. Gayfulin, D. G. Samsonenko, Y. V. Mironov, Russ. Chem. Bull., 2020, 69, 1264; DOI: https://doi.org/10.1007/s11172-020-2896-2.
  11. X. Sun, K. Yuan, Y. Zhang, J. Rare Earths, 2020, 38, 801; DOI: https://doi.org/10.1016/j.jre.2020.01.012.
  12. M. A. Shmelev, Yu. K. Voronina, N. V. Gogoleva, A. A. Sidorov, M. A. Kiskin, F. M. Dolgushin, Yu. V. Nelyubina, G. G. Aleksandrov, E. A. Varaksina, I. V. Taydakov, I. L. Eremenko, Russ. Chem. Bull., 2020, 69, 1544; DOI: https://doi.org/10.1007/s11172-020-2934-0.
  13. W. Wei, K. Zhang, X.-T. Wang, S.-W. Du, Inorg. Chim. Acta, 2020, 511, 119840; DOI: https://doi.org/10.1016/j.ica.2020.119840.
  14. Y. A. Belousov, A. A. Drozdov, I. V. Taydakov, F. Marchetti, R. Pettinari, C. Pettinari, Coord. Chem. Rev., 2021, 445, 214084; DOI: https://doi.org/10.1016/j.ccr.2021.214084.
  15. S. Biswas, P. Neugebauer, Eur. J. Inorg. Chem., 2021, 2021, 4610; DOI: https://doi.org/10.1021/acs.inorgchem.1c00581.
  16. D. Grebenyuk, M. Zobel, M. Polentarutti, L. Ungur, M. Kendin, K. Zakharov, P. Degtyarenko, A. Vasiliev, D. Tsymbarenko, Inorg. Chem., 2021, 60, 8049; DOI: https://doi.org/10.1021/acs.inorgchem.1c00581.
  17. D. I. Grebenyuk, D. M. Tsymbarenko, Zh. Strukt. Khim. [J. Struct. Chem.], 2022, 63; DOI:https://doi.org/10.26902/JSC_id89218 (in Russian).
  18. J. Wang, M. Yu, L. Chen, Z. Li, S. Li, F. Jiang, M. Hong, Molecules, 2021, 26, 1695; DOI: https://doi.org/10.1021/ar0302336.
  19. S. V. Cherezova, M. O. Barsukova, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem., 2021, 62, 897; DOI: https://doi.org/10.1134/S0022476621060093.
  20. Q.-S. Ji, W.-F. Wen, S.-Z. Liu, X. Liu, L.-F. He, X.-G. Yi, W.-T. Chen, Inorg. Chim. Acta, 2021, 519, 120278; DOI: https://doi.org/10.1016/j.ica.2021.120278.
  21. R.-H. Hu, Z.-M. Liu, Y.-W. Niu, Q.-G. Wang, W.-T. Chen, J. Iran. Chem. Soc., 2021, 18, 2381; DOI: https://doi.org/10.1007/s13738-021-02197-w.
  22. Y. M. Litvinova, Y. M. Gayfulin, D. G. Samsonenko, P. V. Dorovatovskiy, V. A. Lazarenko, K. A. Brylev, Y. V. Mironov, Inorg. Chim. Acta, 2021, 528, 120597; DOI: https://doi.org/10.1016/j.ica.2021.120597.
  23. P. J. Llabres-Campaner, J. Pitarch-Jarque, R. Ballesteros-Garrido, B. Abarca, R. Ballesteros, E. García-España, Dalton Trans., 2017, 46, 7397; DOI: https://doi.org/10.1039/C7DT00855D.
  24. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2018, 67, 490; DOI: https://doi.org/10.1007/s11172-018-2098-3.
  25. L. K. Macreadie, E. J. Mensforth, R. Babarao, K. Konstas, S. G. Telfer, C. M. Doherty, J. Tsanaktsidis, S. R. Batten, M. R. Hill, J. Am. Chem. Soc., 2019, 141, 3828; DOI: https://doi.org/10.1021/jacs.8b13639.
  26. J. Yin, H. Yang, H. Fei, Chem. Mater., 2019, 31, 3909; DOI: https://doi.org/10.1021/acs.chemmater.8b05345.
  27. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, D. N. Dybtsev, Inorg. Chem., 2020, 59, 15724; DOI: https://doi.org/10.1021/acs.inorgchem.0c02125.
  28. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem., 2019, 60, 815; DOI: https://doi.org/10.1134/S0022476619050159.
  29. P. A. Demakov, A. A. Ryadun, P. V. Dorovatovskii, V. A. Lazarenko, D. G. Samsonenko, K. A. Brylev, V. P. Fedin, D. N. Dybtsev, Dalton Trans., 2021, 50, 11899; DOI: https://doi.org/10.1039/D1DT00872B.
  30. P. A. Demakov, A. A. Vasileva, S. S. Volynkin, A. A. Ryadun, D. G. Samsonenko, V. P. Fedin, D. N. Dybtsev, Molecules, 2021, 26, 5145; DOI: https://doi.org/10.3390/molecules26175145.
  31. P. A. Demakov, A. A. Vasileva, V. A. Lazarenko, A. A. Ryadun, V. P. Fedin, Crystals, 2021, 11, 1375; DOI: https://doi.org/10.3390/cryst11111375.
  32. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; DOI: https://doi.org/10.1107/S0021889802022112.
  33. A. L. Spek, Acta Crystallogr., 2015, C71, 9; DOI: https://doi.org/10.1107/S2053229614024218.
  34. Y.-B. Lu, X.-M. Jiang, S.-D. Zhu, Z.-Y. Du, C.-M. Liu, Y.-R. Xie, L.-X. Liu, Inorg. Chem., 2016, 55, 3738; DOI: https://doi.org/10.1021/acs.inorgchem.5b02432.
  35. CrysAlisPro 1.171.38.46. Rigaku Oxford Diffraction, 2015.
  36. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.
  37. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.