Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane

K. M. Skupov K. M. Skupov , I. I. Ponomarev I. I. Ponomarev , D. Yu. Razorenov D. Yu. Razorenov , V. G. Zhigalina V. G. Zhigalina , O. M. Zhigalina O. M. Zhigalina , Iv. I. Ponomarev Iv. I. Ponomarev , Yu. A. Volkova Yu. A. Volkova , Yu. M. Volfkovich Yu. M. Volfkovich , V. E. Sosenkin V. E. Sosenkin
Российский электрохимический журнал
Abstract / Full Text

Entire carbon nanofiber mats (carbon nanofiber paper) based on polyacrylonitrile pyropolymer composite were prepared by the preliminary oxidation (stabilization) of the initial polymer at 250–350°C in air and following pyrolysis at 800–1200°C under vacuum. The mats were tested as cathodes in a fuel cell on polybenzimidazole membrane. Properties of the pyropolymers which were obtained by polymer carbonization could be significantly changed by the addition of specific additives to polyacrylonitrile and also by changing thermal treatment. Particularly, the addition of Ketjen Black® or Vulcan® XC72 carbon blacks and polyvinyl pyrrolidone during electrospinning step resulted in increase of material electrical conductivity and inner porosity, which is important for improving fuel cell performance. Depending on oxidation and pyrolysis temperature, the physical properties of platinated carbon nanofiber paper and the efficiency of a fuel cell on polybenzimidazole membrane significantly change.

Author information
  • Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia

    K. M. Skupov, I. I. Ponomarev, D. Yu. Razorenov, Iv. I. Ponomarev & Yu. A. Volkova

  • Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, 119333, Russia

    V. G. Zhigalina & O. M. Zhigalina

  • Frumkin Institute of Physical Chemistry and Electrochemistry of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, 119071, Russia

    Yu. M. Volfkovich & V. E. Sosenkin

  • National Research Center “Kurchatov Institute”, Moscow, 123182, Russia

    V. G. Zhigalina

  1. Steele, B.C. and Heinzel, A., Nature, 2001, vol. 414, p. 345.
  2. Debe, M.K., Nature, 2012, vol. 486, p. 43.
  3. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishukata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Chem. Rev., 2007, vol. 107, p. 3904.
  4. Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C., Appl. Energ., 2011, vol. 88, p. 981.
  5. Xia, Z., Wang, S., Jiang, L., Sun, H., Liu, S., Fu, X., Zhang, B., Su, D.S., Wang, J., and Sun, G., Sci. Rep., vol. 5, p. 16100.
  6. Zhang, J., PEM fuel cell electrocatalyst and catalyst layers, London: Springer, 2008, p. 1137.
  7. Peinemann, K.V. and Nunes, S.P., Membranes for Energy Conversion, vol. 2.
  8. Zeis, R., Beilstein J. Nanotechnol., 2015, vol. 6, p. 68.
  9. Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., and Bujalski, W., J. Power Sources, 2013, vol. 231, p. 264.
  10. Li, Q., Jensen, J.O., Savinell, R.F., and Bjerrum, N.J., Prog. Polym. Sci., 2009, vol. 34, p. 449.
  11. Mader, J., Xiao, L., Schmidt, T.J., and Benicewicz, B.C., Adv. Polym. Sci., 2008, vol. 216, p. 63.
  12. Vang, J.R., Andreasen, S.J., Araya, S.S., and Kaer, S.K., Int. J. Hydrogen Energy, 2014, vol. 39, p. 14959.
  13. Zagudaeva, N.M., Tarasevich, M.R., and Maleeva, E.A., Al’Ternativnaya energetika ekologiya, 2007, vol. 52, no. 8, p. 79.
  14. Li, X., Chen, X., and Benicewicz, B.C., J. Power Sources, 2013, vol. 245, p. 796.
  15. Hu, J., Zhang, H., Zhai, Y., Liu, G., and Yi, B., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1855.
  16. Mamlouk, M. and Scott, K., Int. J. Hydrogen Energy, 2010, vol. 35, p. 784.
  17. Mamlouk, M. and Scott, K., J. Power Sources, 2011, vol. 196, p. 1084.
  18. Oono, Y., Sounai, A., and Hori, M., J. Power Sources, 2009, vol. 189, p. 943.
  19. Kwon, K. and Lee, M.-J., Electrochim. Acta, 2008, vol. 54, p. 513.
  20. Dong, Z., Kennedy, S.J., and Wu, Y., J. Power Sources, 2011, vol. 196, p. 4886.
  21. Jung, J., Park, B., and Kim, J., Nanoscale Res. Lett., 2012, vol. 7, p. 34.
  22. Antolini, E., Appl. Catal., 2009, vol. 88, p. 1.
  23. Ignaki, M., Yang, Y., and Kang, F., Adv. Mater., 2012, vol. 24, p. 2547.
  24. Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H., J. Mater. Sci., 2014, vol. 49, p. 463.
  25. Burger, C., Hsiao, B.S., and Chu, B., Annu. Rev. Mater. Res., 2006, vol. 36, p. 333.
  26. Li, L., Lin, Z., Medford, A.J., and Zhang, X., Carbon, 2009, vol. 47, p. 3346.
  27. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S., Compos. Sci. Technol., 2003, vol. 63, p. 2223.
  28. Tenchurin, T.Kh., Krasheninnikov, S.N., Orekhov, A.S., Chvalun, S.N., Shepelev, A.D., Belousov, S.I., and Gulyaev, A.I., Fibre Chem., 2014, vol. 46, p. 151.
  29. Yusof, N. and Ismail, A.F., J. Anal. Appl. Pyrol., 2012, vol. 93, p. 1.
  30. Park, J.-H., Ju, Y.-W., Park, S.-H., Jung, H.-R., Yang, K.-S., and Lee, W.-J., J. Appl. Electrochem., 2009, vol. 39, p. 1229.
  31. Lister, S. and McLean, G., J. Power Sources, 2004, vol. 130, p. 61.
  32. Li, M., Han, G., and Yang, B., Electrochem. Commun., 2008, vol. 10, p. 880.
  33. Che, A.-F., Germain, V., Cretin, M., Cornu, D., Innocent, C., and Tingry, S., New J. Chem., 2011, vol. 35, p. 2848.
  34. Yang, Y., Simeon, F., Hatton, T.A., and Rutledge, G.C., J. Appl. Polym. Sci., 2012, vol. 5, p. 3861.
  35. Ponomarev, I.I., Skupov, K.M., Razorenov, D.Yu., Zhigalina, V.G., Zhigalina, O.M., Ponomarev, Iv.I., Volkova, Yu.A., Kondratenko, M.S., Bukalov, S.S., and Davydova, E.S., Russ. J. Electrochem., 2016, vol. 52, p. 735.
  36. Ponomarev, I.I., Grinberg, V.A., Emets, V.V., Mayorova, N.A., Zharinova, M.Yu., Volkova, Yu.A., Razorenov, D.Yu., Skupov, K.M., Ponomarev, Iv.I., and Nizhnikovskii, E.A., Russ. J. Electrochem., 2016, vol. 52, p. 525.
  37. Ponomarev, I.I., Ponomarev, Iv.I., Filatov, I.Yu., Filatov, Yu.N., Razorenov, D.Yu., Volkova, Yu.A., Zhigalina, O.M., Zhigalina, V.G., Grebenev, V.V., and Kiselev, N.A., Dokl. Phys. Chem., 2013, vol. 448, p. 23.
  38. Zhigalina, V.G., Zhigalina, O.M., Ponomarev, I.I., Khmelenin, D.N., Razorenov, D.Yu., Ponomarev, Iv.I., and Kiselev, N.A., Nanomaterialy nanostruktury, XXI Vek, 2012, vol. 3, no. 4, p. 36.
  39. Kondratenko, M.S., Ponomarev, I.I., Gallyamov, M.O., Razorenov, D.Y., Volkova, Y.A., Kharitonova, E.P., and Khokhlov, A.R., Beilstein J. Nanotechnol., 2013, vol. 4, p. 481.
  40. Ponomarev, I.I., Rybkin, Yu.Yu., Goryunov, E.I., Petrovskii, P V., and Lysenko, K.A., Russ. Chem. Bull., 2004, vol. 53, p. 2020.
  41. Ponomarev, I.I., Goryunov, E.I., Petrovskii, P.V., Ponomarev, Iv.I., Volkova, Yu.A., Razorenov, D.Yu., and Khokhlov, A.R., Dokl. Chem., 2009, vol. 429, p. 315.
  42. Ponomarev, Iv.I., Ponomarev, I.I., Goryunov, E.I., Volkova, Yu.A., Razorenov, D.Yu., Starikova, Z.A., Blagodatskikh, I.V., Buzin, M.I., and Khokhlov, A.R., Dokl. Chem, 2012, vol. 447, p. 227.
  43. Ponomarev, Iv.I., Ponomarev, I.I., Volkova, Yu.A., Razorenov, D.Yu., Blagodatskikh, I.V., Volkov, I.O., and Khokhlov, A.R., Dokl. Chem., 2012, vol. 447, p. 249.
  44. Ponomarev, I.I., Chalykh, A.E., Aliev, A.D., Gerasimov, V.K., Razorenov, D.Yu, Stadnichuk, V.I., Ponomarev, Iv.I., Volkova, Yu.A., and Khokhlov, A.R., Dokl. Phys. Chem., 2009, vol. 429, p. 237.
  45. Ponomarev, Iv.I., Ponomarev, I.I., Petrovskii, P.V., Volkova, Yu.A., Razorenov, D.Yu., Goryunova, I.B., Starikova, Z.A., Fomenkov, A.I., and Khokhlov, A.R., Dokl. Chem., 2010, vol. 432, p. 168.
  46. Ponomarev, I.I., Ponomarev, Iv.I., Volkova, Yu.A., Zharinova, M.Y., and Razorenov, D.Yu., Mendeleev Commun., 2012, vol. 22, p. 162.
  47. Ponomarev, I.I., Razorenov, D.Yu., Ponomarev, Iv. I., Volkova, Yu.A., and Skupov, K.M., Russ. J. Electrochem., 2014, vol. 50, p. 694.
  48. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloid. Surf. A, 2001, vol. 187, p. 349.
  49. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., J. Power Sources, 2010, vol. 195, p. 5429.
  50. Su, L., Jia, W., Li, C.-M., and Lei, Y., ChemSusChem, 2014, vol. 7, p. 361.
  51. Brandon, N.P. and Brett, D.J., Phil. Trans. Roy. Soc. A, 2006, vol. 364, p. 147.