Examples



mdbootstrap.com



 
Статья
2021

Heat Capacity of an Ethylene Glycol–Dimethylsulfoxide System


A. V. TyurinA. V. Tyurin, I. A. SoloninaI. A. Solonina, M. N. RodnikovaM. N. Rodnikova, D. A. SirotkinD. A. Sirotkin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421080288
Abstract / Full Text

The heat capacity of an ethylene glycol (EG)–dimethylsulfoxide (DMSO) liquid system is measured to determine its solvophobic effect. Measurements are made in the temperature range of 300–340 K for pure DMSO and the 0 to ~15 and 50 mol % ranges of DMSO concentrations. The concentration dependences of the apparent and excess apparent heat capacities of DMSO are calculated at five given temperatures. The results are explained from the viewpoint of the weak solvophobic effect in the studied EG–DMSO system.

Author information
  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Moscow, RussiaA. V. Tyurin, I. A. Solonina, M. N. Rodnikova & D. A. Sirotkin
References
  1. M. Awan, I. Buriak, R. Fleck, et al., Regener. Med. (2020). https://doi.org/10.2217/rme-2019-0145
  2. A. Baudot and V. Odagescu, Cryobiology 48, 283 (2004).
  3. M. N. Rodnikova, Zh. Fiz. Khim. 67, 275 (1993).
  4. G. I. Egorov and D. M. Makarov, Russ. J. Phys. Chem. A 83, 693 (2009).
  5. M. N. Rodnikova, Yu. A. Zakharova, I. A. Solonina, and D. A. Sirotkin, Russ. J. Phys. Chem. A 86, 892 (2012).
  6. U. Kaatze, R. Pottel, and M. Scháfer, J. Phys. Chem. 93, 5623 (1989).
  7. M. N. Rodnikova, in Structural Self-Organization in Solutions and at the Interface (LKI, Moscow, 2008) [in Russian].
  8. M. N. Rodnikova, J. Mol. Liq. 136, 211 (2007).
  9. V. N. Afanas’ev, D. B. Kayumova, M. D. Chekunova, and M. N. Rodnikova, Russ. J. Phys. Chem. A 79, 993 (2005).
  10. M. N. Rodnikova, D. B. Kayumova, Zh. V. Dobrokhotova, A. V. Khoroshilov, and T. M. Val’kovskaya, Russ. J. Phys. Chem. A 81, 1891 (2007).
  11. I. A. Chaban, M. N. Rodnikova, L. L. Chaikov, S. V. Krivokhizha, and V. V. Zhakova, Russ. J. Phys. Chem. A 71, 1974 (1997).
  12. L. Avedikian, G. Perron, and J. E. Desnoyer, J. Solution Chem. 4, 331 (1975).
  13. G. Roux, G. Perron, and J. E. Desnoyers, J. Phys. Chem. 82, 966 (1978).
  14. Yu. I. Naberukhin, Doctoral Dissertation (Novosibirsk, 1984), pp. 234, 251.
  15. M. A. Anisimov, N. S. Zaugol’nikova, and G. I. Ovodov, JETP Lett. 21, 220 (1975).
  16. I. A. Chaban and M. N. Rodnikova, Russ. J. Phys. Chem. A 82, 2019 (2008).
  17. M. N. Rodnikova, L. V. Lanshina, and I. A. Chaban, Dokl. Akad. Nauk SSSR 315, 148 (1990).
  18. L. V. Lanshina, M. N. Rodnikova, and I. A. Chaban, Zh. Fiz. Khim. 66, 204 (1992).
  19. E. G. Kononova, M. N. Rodnikova, I. A. Solonina, and D. A. Sirotkin, Russ. J. Phys. Chem. A 92, 1308 (2018).
  20. V. V. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, Prib. Tekh. Eksp., No. 6, 195 (1985).
  21. I. A. Solonina, T. V. Laptinskaya, M. N. Rodnikova, and E. V. Shirokova, Russ. J. Phys. Chem. A 95 1313 (2021).
  22. G. I. Egorov and D. M. Makarov, Russ. J. Phys. Chem. A 82, 1778 (2008).
  23. I. A. Solonina, M. N. Rodnikova, M. R. Kiselev, A. V. Khoroshilov, and E. V. Shirokova, Russ. J. Phys. Chem. A 92, 918 (2018).
  24. M. N. Rodnikova, Acta Chim. Slov. 56, 215 (2009).