Comparative Study of Graphite and the Products of Its Electrochemical Exfoliation

A. G. Krivenko A. G. Krivenko , R. A. Manzhos R. A. Manzhos , N. S. Komarova N. S. Komarova , A. S. Kotkin A. S. Kotkin , E. N. Kabachkov E. N. Kabachkov , Yu. M. Shul’ga Yu. M. Shul’ga
Российский электрохимический журнал
Abstract / Full Text

A comparative study of electrochemical characteristics of graphite electrodes and precipitates of suspensions produced by the graphite exfoliation is carried out. The graphite is exfoliated into low-layered graphene structures formed in the course of electrochemical impact during the applying of alternating potential to the electrodes. The low-layered graphene structures and graphite electrodes were characterized using numerous procedures from optical, electron, and scanning microscopy, UV-vis-, IR-, Raman, and XPSspectroscopy, and thermogravimetric analysis. The rate constant of electron transfer at the initial graphite for [Ru(NH3)6]2+/3+ and [Fe(CN)6]4–/3– redox pairs is shown to approach the value measured both for the lowlayered graphene structures obtained during the graphite electrode exfoliation and for highly oriented carbon nanowalls and single-walled nanotubes measured earlier. At the same time, the Fe2+/3+ redox-process occurring at the graphite electrode is faster than at the low-layered graphene structures and much faster (by 2–3 orders of magnitude) than at the nanowalls. It is concluded that no significant acceleration of the electron transfer generally occurs when passing from the graphite electrodes to the low-layered graphene structures.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    A. G. Krivenko, R. A. Manzhos, N. S. Komarova, A. S. Kotkin, E. N. Kabachkov & Yu. M. Shul’ga

  1. Kannan, M.V. and Kumar, G.G., Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications, Biosensors Bioelectronics, 2016, vol. 77, p. 1208.
  2. Chua, C.K. and Pumera, M., Carbocatalysis: The State of “Metal-Free” Catalysis, Chemistry-European J., 2015, vol. 21, p. 12550.
  3. Kamiya, K., Hashimoto, K., and Nakanishi, S., Graphene Defects as Active Catalytic Sites that are Superior to Platinum Catalysts in Electrochemical Nitrate Reduction, ChemElectroChem., 2014, vol. 1, p. 858.
  4. Shinde, D.B., Brenker, J., Easton, C.D., Tabor, R.F., Neild, A., and Majumder, M., Shear Assisted Electrochemical Exfoliation of Graphite to Graphene, Langmuir, vol. 32, p. 3552.
  5. Strong, V., Dubin, S., El-Kady, M.F., Lech, A., Wang, Y., Weiller, B.H., and Kaner, R.B., Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices, ACS NANO, 2012, vol. 6, p. 1395.
  6. Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., Daidova, G.I., Badamshina, E.R., Shulga, N.Yu., Skryleva, E.A., Agapov, A.L., Voylov, D.N., Sokolov, A.P., and Martynenko, V.M., Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights, RSC Advances, 2014, vol. 4, p. 587.
  7. Disa, N. Md., Bakar, S.A., Alfarisa, S., Mohamed, A., Isa, I. Md., Kamari, A., Hashim, N., and Mahmood, M.R., A Review: Synthesis Methods of Graphene and Its Application in Supercapacitor Devices, Advantage Mater. Res., 2015, vol. 1109, p. 40.
  8. Simonet, J., Electrochemical exfoliation in real time of natural graphite deposited onto glassy carbon. Doping and modifying carbons through ultra-thin graphite layers, Electrochem. Commun., 2014, vol. 48, p. 142.
  9. Jouikov, V. and Simonet, J., Graphene: Large Scale Chemical Functionalization By Cathodic Means, Electrochem. Commun., 2014, vol. 46, p. 132.
  10. Alanyalıoglu, M., Segura, J.J., Oro-Sole, J., and Casan-Pastor, N., The synthesis of graphene sheets with controlled thickness and order using surfactantassisted electrochemical processes, Carbon, 2012, vol. 50, p. 142.
  11. Zeng, F., Sun, Z., Sang, X., Diamond, D., Lau, K.T., Liu, X., and Su, D.S., In Situ One-Step Electrochemical Preparation of Graphene Oxide Nanosheet-Modified Electrodes for Biosensors, ChemSusChem, 2011, vol. 4, p. 1587.
  12. Rao, K.S., Senthilnathan, J., Liu, Y.-F., and Yoshimura, M., Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite, Sci. Reports, 2014, vol. 4, p. 4237.
  13. Ejigu, A., Kinloch, I.A., and Dryfe, R.A.W., Single Stage Simultaneous Electrochemical Exfoliation and Functionalization of Graphene, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 710.
  14. Yen, P-J., Ting, C-C., Chiu, Y.-C., Tseng, T.-Y., Hsu, Y.-J., Wua, W.-W., and Wei, K.-H., Facile production of graphene nanosheets comprising nitrogendoping through in situ cathodic plasma formation during electrochemical exfoliation, J. Mater. Chem. C, 2017, vol. 5, p. 2597.
  15. Hummers, W.S. and Offeman, R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  16. Javed, S.I. and Hussain, Z., Covalently Functionalized Graphene Oxideq—Characterization and Its Electrochemical Performance, Int. J. Electrochem. Sci., 2015, vol. 10, p. 9475.
  17. Wu, F., Huang, T., Hu, Y.J., Yang, X., Ouyang, Y.J., and Xie, Q.J., Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, Microchim. Acta, 2016, vol. 183, p. 2539.
  18. Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K., Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc., 2014. vol. 136, p. 6083.
  19. Sahoo, S.K. and Mallik, A., Simple, Fast and Cost-E® ective Electrochemical Synthesis of Few Layer Graphene Nanosheets, NANO, 2015, vol. 10, Article Number 1550019.
  20. Paredes, J.I., Villar-Rodil, S., Solıs-Fernandez, P., Martınez-Alonso, A., and Tascon, J.M.D., Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide, Langmuir, 2009, vol. 25, p. 5957.
  21. Munuera, J.M., Paredes, J.I., Villar-Rodil, S., Ayán-Varela, M., Martínez-Alonso, A., and Tascón, J.M.D., Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide–free graphene flakes, Nanoscale, 2016, vol. 8, p. 2982.
  22. Shirley, D.A., Hyperfine Interactions and ESCA Data, Phys. Scripta., 1975, vol. 11, p. 117.
  23. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 2007, vol. 45, p. 1558.
  24. Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., Davidova, G.I., Badamshina, E.R., Shulga, N.Yu., Skryleva, E.A., Agapov, A.L., Voylov, D.N., Sokolov, A.P., and Martynenko, V.M., Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights, RSC Adv., 2014, vol. 4, p. 587.
  25. Brownson, D.A.C., Foster, C.W., and Banks, C.E., The electrochemical performance of graphene modified electrodes: An analytical perspective, Analyst., 2012, vol. 137, p. 1815.
  26. Beidaghi, M., Wang, Z., Gu, L., and Wang, C., Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes, J. Solid State Electrochem., 2012, vol. 16, p. 3341.
  27. Carter, R., Oakes, L., Cohn, A., Holzgrafe, J., Zarick, H.F., Chatterjee, S., Bardhan, R., and Pint, C.L., Solution Assembled Single Walled Carbon Nanotube Foams; Superior Performance in Supercapacitors, Lithium Ion, and Lithium Air Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 20137.
  28. Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., and Naumkin, A.V., Active forms of oxygen as agents for electrochemical functionalization of SWCNTs, Carbon, 2013, vol. 53, p. 188.
  29. Yamada, Y., Kimizuka, O., Tanaike, O., Machida, K., Suematsu, S., Tamamitsu, K., Saeki, S., Yoshizawa, N., Yamashita, J., Don, F., Hata, K., and Hatori, H., Capacitor Properties and Pore Structure of Single-and Double-Walled Carbon Nanotubes, Electrochem. Solid-State Lett., 2009, vol. 12, K14–K16.
  30. Krivenko, A.G., Komarova, N.S., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shul’ga, Yu.M., Manzhos, P.A., Doronin, S.V., and Krivchenko, V.A., Electrochemical Modification of Electrodes Based on Highly Oriented Carbon Nanowalls, Russ. J. Electrochem., 2015, vol. 51, p. 963.
  31. Valota, A.T., Kinloch, I.A., Novoselov, K.S., Casiraghi, C., Eckmann, A., Hill, E.W., and Dryfe, R.A.W., Electrochemical Behavior of Monolayer and Bilayer Graphene, ACS NANO, 2012, vol. 5, p. 8809.
  32. Oldham, K.B. and Myland, J.C., Modelling cyclic voltammetry without digital simulation, Electrochim. Acta, 2011, vol. 56, p. 10612.
  33. Komarova, N.S., Krivenko, A.G., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shulga, Y.M., and Krivchenko, V.A., Enhancement of the Carbon Nanowall Film Capacitance. Electron Transfer Kinetics on Functionalized Surfaces, Langmuir, 2015, vol. 31, p. 7129.
  34. Komarova, N.S., Krivenko, A.G., Ryabenko, A.G., Naumkin, A.V., Maslakov, K.I., and Savilov, S.V., Functionalization and defunctionalization of single walled carbon nanotubes: Electrochemical and morphologic consequences, J. Electroanal. Chem., 2015, vol. 738, p. 27.
  35. Ambrosi, A. and Pumera, M., Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates, J. Phys. Chem. C, 2013, vol. 117, p. 2053.
  36. Hong, C., Wong, A., Ambrosi, A., and Pumera, M., Thermally reduced graphenes exhibiting a close relationship to amorphous carbon, Nanoscale, 2012, vol. 4, p. 4972.
  37. Punckt, C., Pope, M.A., and Aksay, I.A., High Selectivity of Porous Graphene Electrodes Solely Due to Transport and Pore Depletion Effects, J. Phys. Chem. C, 2014, vol. 118, p. 22635.
  38. Cai, M., Outlaw, R.A., Butler, S.M., and Miller, J.R., A high density of vertically-oriented graphenes for use in electric double layer capacitors, Carbon, 2012, vol. 50, p. 5481.
  39. Zhang, F., Lu, L., Yang, M., Gao, C., and Wang, Z., Electrochemistry of Graphene Flake Electrodes: Edge and Basal Plane Effect for Biosensing, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10172.
  40. Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., and Banks, C.E., Electrochemical properties of CVD grown pristine graphene: monolayer-vs. quasigraphene, Nanoscale, 2014, vol. 6, p. 1607.
  41. Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47.