Preparation of Hydrophobic Porous Silicon by Metal-Assisted Etching with Pd-Catalyst

O. V. Volovlikova O. V. Volovlikova , S. A. Gavrilov S. A. Gavrilov , G. O. Silakov G. O. Silakov , A. V. Zheleznyakova A. V. Zheleznyakova , A. A. Dudin A. A. Dudin
Российский электрохимический журнал
Abstract / Full Text

The process of the porous silicon layer formation by metal-assisted etching of single-crystal Si with the resistivity of ρ = 0.01 Ω cm, coated with thin Pd-film up to 100 nm thick, in HF/H2O2/H2O solution is studied. The porous silicon is studied by scanning electron microscopy and gravimetric analysis. The dependence of the silicon dissolution rate on the HF concentration, in the presence and in the absence of the Pd-film, is investigated. The anodic current facilitating the Si dissolution in the HF solutions of different concentration is studied. By using sessile drop method, the porous silicon formed by the Pd-assisted anodic etching was shown to be superhydrophobic. The porous Si wetting angle reached 172°. The free surface energy for the porous layers and the water surface tension at the porous Si are calculated. The modified Si-surfaces may found their possible use in robotics.

Author information
  • National Research University “Moscow Institute of Electronic Technology”, 124498, Zelenograd, Moscow, Russia

    O. V. Volovlikova, S. A. Gavrilov, G. O. Silakov & A. V. Zheleznyakova

  • Institute of Nanotechnology and Microelectronics, Russian Academy of Sciences, 119991, Moscow, Russia

    A. A. Dudin

  1. Canham, L., Handbook of Porous Silicon, Springer International Publishing, 2014.
  2. Sailor, M.J., Porous Silicon in Practice: Preparation, Characterization and Applications, Wiley–VCH, 2012.
  3. Koh, Je-S., Yang, E., Jung, G.-P., Jung, S.-P., Son, J.H., Lee, S.-I., and Jablonski, P.G. Jumping on water: Surface tension–dominated jumping of water striders and robotic insects, Science, 2015, vol. 349, no. 6247, p. 517.
  4. Zhao, J., Zhang, X., Chen, N., and Pan, Q., Why Superhydrophobicity Is Crucial for a Water-Jumping Microrobot? Experimental and Theoretical Investigations, ACS Appl. Mater. Interfaces, 2012, vol. 4 (7), p. 3706.
  5. Pyatilova, O.V., Gavrilov, S.A., Shilyaeva, Y.I., Pavlov, A.A., Shaman, Y.P., and Dudin, A.A., Influence of the doping type and level on the morphology of porous Si formed by galvanic etching, Semiconductors, 2017, vol. 51, no. 2, p. 173.
  6. Lazarouk, S.K., Dolbik, A.V., Jaguiro, P.V., Labu-nov, V.A., and Borisenko, V.E. Fast exothermic processes in porous silicon, Semiconductors, 2005, vol. 39, p. 881.
  7. Muñoz, E.C., Díaz, C., Navarrete, E., Henríquez, R., Schrebler, R., Córdova, R., Marotti, R., and Heyser, C., Characterization of surface changes on silicon and porous silicon after interaction with hydroxyl radicals, Arabian J. Chem., 2016 (in Press).
  8. Nenzi, P., Giacomello, A.O, Bolognesi, G., Chinappi, M., Balucani, M., and Casciola, C.M., Superhydrophobic Porous Silicon Surfaces, Sensors Transducers J., 2011, vol. 13 (special Issue), p. 62.
  9. Jiang, L., Li, S., Wang, J., Yang, L., Sun, Q., and Li, Zh., Surface Wettability of Oxygen Plasma Treated Porous Silicon, J. Nanomaterials, 2014, article ID 526149.
  10. Qu, Y., Liao, L., Li, Yu., Zhang, H., Huang, Yu, and Duan, X., Electrically conductive and optically active porous silicon nanowires, Nano Lett., 2009, vol. 9 (12), p. 4539.
  11. Lee, Ch.-L., Tsujino, K., Kanda, Yu., Ikeda, Sh., and Matsumura, M., Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts, J. Mater. Chem., 2008, vol. 18, p. 1015.
  12. Huang, Z., Geyer, N., Werner, P., De Boor, J., and Gösele, U., Metal-assisted chemical etching of silicon: a review, Advanced Mater., 2011, vol. 23 (2), p. 285.
  13. Zhang, T., Zhang, P., Li, Sh., Li, W., Wu, Zh., and Jiang, Y., Black silicon with self-cleaning surface prepared by wetting processes, Nanoscale Res. Lett., 2013, vol. 8(1), p. 351.
  14. Volovlikova, O.V., Silakov, G.O., Gavrilov, S.A., Dudin, A.A., Diudbin, G.O., and Shilyaeva, Y.I., Investigation of the Morphological Evolution and Etching Kinetics of black Silicon during Ni-Assisted Chemical Etching, J. Physics: Conference Series, 2018, vol. 987 (1), article no. 012039.
  15. Li, X. and Bohn, P.W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett., 2000, vol. 77, p. 2572.
  16. Chattopadhyay, S., Li, X., and Bohn, P.W., In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching, J. Appl. Phys., 2002, vol. 91, p. 6134.
  17. Hadjersi, T., Gabouze, N., Yamamoto, N., Sakamaki, K., Takai, H., Ababou, A., and Kooij, E.S., Photoluminescence from undoped silicon after chemical etching combined with metal plating, Phys. Stat. Sol. C, 2005, vol. 2, no. 9, p. 3384.
  18. Cichoszewski, J., Reuter, M., Schwerdt, F., and Werner, J.H., Role of catalyst concentration on metal assisted chemical etching of silicon, Electrochim. Acta, 2013, vol. 30. p. 333.
  19. Yuan, Y. and Lee, T.R. In:Bracco, G.andHolst, B., Eds.,Surface Science Techniques Springer Series, Surface Sciences, Contact Angle and Wetting Properties, Berlin: Springer, 2013, p. 3–34.
  20. Seo, Y.H., Nahm, K.S., Hahn, Y.-B., and Kim, Ch.B., Reaction kinetics of silicon etching in HF–K2Cr2O7–H2O solution, Korean J. Chem. Eng., 1994, vol. 11, no. 2, p. 89.
  21. Volovlikova, O.V., Gavrilov, S.A., Berezkina, A.Yu., and Tishchenko, S.A. Influence of illumination and doping level on porous silicon formed by photoelectrochemical etching, Porous Semiconductors Sci. Technol. (PSST)Conference, 2018, p. 255.
  22. Gavrilov, S.A., Belogorokhov, A.I., and Belogorokhova L.I. A mechanism of oxygen-induced passivation of porous silicon in the HF : HCl : C2H5OH solutions, Semiconductors, 2002, vol. 36, no. 1, p. 98.
  23. Ottow, S., Popkirov, G.S., and Föll, H. Determination of flat-band potentials of silicon electrodes in HF by means of AC resistance measurements, J. Electroanal. Chem., 1998, vol. 455, p. 29.
  24. Da Fonseca, C., Ozanam, F., and Chazalviel, J.-N., In situ infrared characterisation of the interfacial oxide during the anodic dissolution of a silicon electrode in fluoride electrolytes, Surface Sci., 1996, vol. 365, p. 1.
  25. Bailes, M., Bohm, S., Peter, L.M., Riley, D.J., and Greef, R., An electrochemical and ellipsometric study of oxide growth on silicon during anodic etching in fluoride solutions, Electrochim. Acta, 1998, vol. 43, p. 1757.
  26. Geyer, N., Fuhrmann, B., Leipner, H.S., and Werner, P. Ag-Mediated Charge Transport during Metal-Assisted Chemical Etching of Silicon Nanowires, ACS Appl. Mater. Interfaces, 2013.https://doi.org/10.1021/am400510f
  27. Saha, H., Dutta, K., Hossain, S.M., Chakraborty, S., and Saha, A. Mechanism and control of formation of porous silicon on p-type Si, Bull. Mater. Sci., 1998, vol. 21, p. 201.
  28. Kolasinski, K.W. and Barclay, W.B., Stain Etching of Silicon With and Without the Aid of Metal Catalysts, ECS Trans., 2013, vol. 50, no. 37, p. 25.
  29. Gavrilov, S.A. and Belov, A.N., Electrochemical processes in the technology of micro- and nanoelectronics (in Russian), Moscow: Higher Education, 2008, p. 70–137.
  30. Xia, X.H., Ashruf, C.M.A., French, P.J., and Kelly, J.J., Galvanic Cell Formation in Silicon/Metal Contacts:  The Effect on Silicon Surface Morphology, Chem. Mater., 2000, vol. 12, p. 1671.
  31. Ashruf, C.M.A., French, P.J., Sarro, P.M., Kazinczi, R., Xia, X.H., and Kelly, J.J. Galvanic etching for sensor fabrication, J. Micromechanics Microengineering, 2000, vol. 10, p. 505.
  32. Lee, J., Morita, K., and Tanaka, T., Determination of Macro-Contact Angle and Line Tension at High Temperatures for Au/Al2O3 System at 1373 K Using a Micro-Scale Wetting Method, Mater. Transactions, 2003, vol. 44, no. 12, p. 2659.
  33. Wenzel, R.N., Surface Roughness and Contact Angle, J. Phys. Chem. 1949, vol. 53, no 9, p. 1466.
  34. Genzer, J. and Efimenko, K., Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review, Biofouling, 2006, vol. 22, p. 339.
  35. Kinloch, A.J., Adhesion and adhesives: Science and technology, London: Chapman and Hall, 1987, p. 484.
  36. Ulin, V.P., Ulin, N.V., Soldatenkov, F.Yu., Semenov, A.V., and Bobyl, A.V. Surface of porous silicon under hydrophilization and hydrolytic degradation, Semiconductors, 2014, vol. 48, no. 9, p. 1211.
  37. Gavrilov, S.A., Karavanskii, V.A., and Sorokin, I.N. Effect of the electrolyte composition on properties of porous silicon layers, Russ. J. Electrochem., 1999, vol. 35, p. 729.