Abstract / Full Text

The electrochemical properties of N-methyl- and N-phenyl-2,4,6-triphenylpyridinium perchlorates were studied by cyclic voltammetry (CV). The substituent at the nitrogen atom strongly affects the potentials of salt reduction and the electrochemical reversibility of the transfer of the second electron.

Author information
  • Institute of Physics and Chemistry, Ogarev Mordovia State University, 430005, Saransk, Russia

    A. V. Dolganov, B. S. Tanaseichuk, O. V. Tarasova, O. Yu. Chernyaeva, Yu. M. Selivanova, A. D. Yudina, K. A. Grigor’yan, A. V. Balandina & V. Yu. Yurova

  1. Turner, J.A., Sustainable hydrogen production, Science, 2004, vol. 305, p. 972.
  2. Lewis, N.S. and Nocera, D.G., Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, p. 15 729.
  3. Helm, M.L., Stewart, M.P., Bullock, R.M., Rakowski, DuBois M., and DuBois, D.L., A synthetic nickel electrocatalyst with a turnover frequency above 100 000 s−1 for H2 production, Science, 2011, vol. 333, p. 863.
  4. Karunadasa, H.I., Chang, C.J., and Long, J.R., A molecular molybdenum-oxo catalyst for generating hydrogen from water, Nature, 2010, vol. 464, p. 1329.
  5. McKone, J.R., Marinescu, S.C., Brunschwig, B.S., Winkler, J.R., and Gray, H.B., Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., 2014, vol. 5, p. 865.
  6. Afgan, N.H., Veziroglu, A., and Carvalho, M.G., Multi-criteria evaluation of hydrogen system options, Int. J. Hydrogen Energy, 2007, vol. 32, p. 3183.
  7. Wang, M., Chen, L., and Sun, L., Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy Environ Sci., 2012, vol. 5, p. 6763.
  8. Artero, V., Chavarot-Kerlidou, M., and Fontecave, M., Splitting water with cobalt, Angew. Chem. Int. Ed., 2011, vol. 50, p. 7238.
  9. Belaya, I.G., Svidlov, S.V., Dolganov, A.V., Zelinskii, G.E., Potapova, T.V., Vologzhanina, A.V., Varzatskii, O.A., Bubnov, Y.N., and Voloshin, Y.Z., Apically linked iron(II) dioximate and oximehydrazonate bis-clathrochelates with hydrocarbon spacer substituents and their semi- and monoclathrochelate precursors and analogs: synthetic strategy, structure, redox and electrocatalytic properties, Dalton Trans., 2013, vol. 42, p. 13 667.
  10. Lebed, E.G., Belov, A.S., Dolganov, A.V., Vologzhanina, A.V., Szebesczyk, A., Gumienna-Kontecka, E., Kozlowski, H., Bubnov, Y.N., Dubey, I.Y., and Voloshin, Y.Z., First clathrochelate iron and cobalt(II) tris-dioximates with reactive apical substituents, Inorg. Chem. Commun., 2013, vol. 30, p. 53.
  11. Dolganov, A.V., Tanaseichuk, B.S., Moiseeva, D.N., Yurova, V.Y., Sakanyan, J.R., Shmelkova, N.M., and Lobanov, V.V., Acridinium salts as metal-free electrocatalyst for hydrogen evolution reaction, Electrochem Commun., 2016, vol. 68, p. 59.
  12. Dolganov, A.V., Tanaseichuk, B.S., Ivantsova, P.M., Tsebulaeva, Y.V., Kostrukov, S.G., Moiseeva, D.N., Shmelkova, N.M., Yurova, V.Y., Balakireva, O.I., Nagaeva, I.G., and Trushkova, N.N. Metal-free electrocatalyst for hydrogen production from water, Int. J. Electrochem. Sci., 2016, vol. 11, p. 9559.
  13. Mairanovskii, S.G., Kataliticheskie i kineticheskie volny v polyarografii (Catalytic and Kinetic Waves in Polarogaphy), Moscow: Nauka, 1966.
  14. Mairanovskii, S.G., Theory of catalytic hydrogen waves in organic polarography, Russ. Chem. Rev., 1964, vol. 33, p. 38.
  15. Mairanovskii, S.G., Polarographic catalytic hydrogen waves as dependent on the structure of the organic catalyst, Dokl. Akad. Nauk SSSR, 1962, vol. 142, p. 1327.
  16. Mairanovskii, S.G., The electroreduction of organic compounds in the presence of catalysts causing catalytic evolution of hydrogen and the electrosynthesis of chiral compounds, Russ. Chem. Rev., 1991, vol. 60, p. 1085.
  17. Leibson, V.N., Churilina, A.P., Mendkovic, A.S., and Gultyai, V.P., New ideas of the mechanism of catalytic hydrogen evolution in the buffer solutions of organic compounds, J. Electroanal. Chem., 1989, 261, p. 165.
  18. Leibzon, V.N., Churilina, A.P., Mendkovich, A.S., and Gultyai, V.P., Nature of the polarographic catalytic hydrogen waves due to organic compounds, Russ. Chem. Bull., 1986, vol. 35, p. 1773.
  19. Dorofeenko, G.N., Sadekova, E.I., and Kuznetsova, E.V., Preparativnaya khimiya pirilievykh solei (Preparative Chemistry of Pyrilium Salts), Rostov-on-Don: Rost. Univ., 1979.
  20. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11 623.
  21. Ditchfield, R., Hehre, W.J., and Pople, J.A., Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys., 1971, vol. 54, p. 724.
  22. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 2003, vol. 14, p. 1347.
  23. Granovsky, A.A., Firefly version 8.0, http://classic. chem.msu.su/gran/firefly/index.html.
  24. Tomasi, J., Mennucci, B., and Cammi, R., Quantum mechanical continuum solvation models, 2005, Chem. Rev., vol. 105, p. 2999.
  25. Bard, A.J. and Faulkner, L.R., Electrochemical methods: Fundamentals and applications, New York: Wiley, 2001.
  26. Hogan, D.T. and Sutherland, T.C., Modern spin on the electrochemical persistence of heteroatom-bridged triphenylmethyl-type radicals, J. Phys. Chem. Lett, 2018, vol. 9, p. 2825.
  27. Baik, M. and Friesner, R.A., Computing redox potentials in solution: Density functional theory as a tool for rational design of redox agents, J. Phys. Chem. A, 2002, vol. 106, p. 7407.