Статья
2021
Abstract / Full Text

A catalytic coating, composed of a mixture of nanocrystals of Pt and RuO2, used for oxidation of CH3OH, was formed by the thermal procedure. The size of the RuO2 nanocrystals was increasing and of Pt was decreasing with increasing the content of RuO2. The optimal coating composition depended on potential. At more positive potentials, the optimal coatings contained lower amounts of RuO2. The oxidation reaction of CH3OH on the coatings with the RuO2 content higher than optimal, was determined by dehydrogenization of CH3OH. At lower amounts of RuO2, oxidation of CH3OH was determined by the oxidation reaction of intermediates COad with oxy species of ruthenium. The catalytic effect was caused by a bifunctional mechanism. The bifunctional mechanism is based on the fact that oxy species were formed on Ru at more negative potentials than on Pt. These oxy species oxidized COad intermediates, bound to adjacent Pt atoms and thus discharged them for dehydrogenation of the subsequent CH3OH molecules.

Author information
  • Innovation Center of Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia

    Milica Spasojević

  • Joint Laboratory for Advanced Materials of Serbian Academy of Science and Arts, Section for Amorphous Systems, Faculty of Technical Sciences, Čačak, University of Kragujevac, 32000, Čačak, Serbia

    L. Ribić-Zelenović, M. Spasojević & D. Marković

References
  1. Yu, X. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.
  2. Rice, C., Ha, S., Masel, R.I., Waszczuk, P., Wieckowski, A., and Barnard, T., Direct formic acid fuel cells, J. Power Sources, 2002, vol. 111, p. 83.
  3. Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., and Wilkinson, D.P., A review of anode catalysis in the direct methanol fuel cell, J. Power Sources, 2006, vol. 155, p. 95.
  4. Zhao, X., Yin, M., Ma, L., Liang, L., Liu, C., Liao, J., Lu, T., and Xing, W., Recent advances in catalysts for direct methanol fuel cells, Energy Environ. Sci., 2011, vol. 4, p. 2736.
  5. Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru?, Chem. Rev., 2014, vol. 114, p. 12397.
  6. Heinzel, A. and Barragán, V.M., A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, vol. 84, p. 70.
  7. Petrii, O.A., The progress in understanding the mechanism of methanol and formic acid electrooxidation on platinum group metals, Russ. J. Electrochem., 2019, vol. 55, p. 1.
  8. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.
  9. DeSario, D.Y. and DiSalvo, F.J., Ordered intermetallic Pt–Sn nanoparticles: exploring ordering behavior across the bulk phase diagram, Chem. Mater., 2014, vol. 26, p. 2750.
  10. Abe, H., Matsumoto, F., Alden, L.R., Warren, S.C., Abruña, H.D., and DiSalvo, F.J., Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles, J. Am. Chem. Soc., 2008, vol. 130, p. 5452.
  11. Cui, Z., Chen, H., Zhao, M., Marshall, D., Yu, Y., Abruña, H., and DiSalvo, F.J., Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts, J. Am. Chem. Soc., 2014, vol. 136, p. 10206.
  12. Kang, Y. and Murray, C.B., Synthesis and electrocatalytic properties of cubic Mn−Pt nanocrystals (nanocubes), J. Am. Chem. Soc., 2010, vol. 132, p. 7568.
  13. Ghosh, T., Leonard, B.M., Zhou, Q., and DiSalvo, F.J., Pt alloy and intermetallic phases with V, Cr, Mn, Ni, and Cu: synthesis as nanomaterials and possible applications as fuel cell catalysts, Chem. Mater., 2010, vol. 22, p. 2190.
  14. Yang, H., Zhang, J., Sun, K., Zou, S., and Fang, J., Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes, Angew. Chem. Int. Ed., 2010, vol. 49, p. 6848.
  15. Liu, L., Pippel, E., Scholz, R., and Gösele, U., Nanoporous Pt−Co alloy nanowires: fabrication, characterization, and electrocatalytic properties, Nano Lett., 2009, vol. 9, p. 4352.
  16. Wang, D., Xin, H.L., Hovden, R., Wang, H., Yu, Y., Muller, D.A., DiSalvo, F.J., and Abruna, H.D., Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater., 2013, vol. 12, p. 8.
  17. Chen, W., Kim, J., Sun, S., and Chen, S., Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid, Langmuir, 2007, vol. 23, p. 11303.
  18. Wang, D.Y., Chou, H.L., Lin, Y.C., Lai, F.J., Chen, C.H., Lee, J.F., Hwang, B.J. and Chen, C.C., Simple replacement reaction for the preparation of ternary Fe1 ‒ xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction, J. Am. Chem. Soc., 2012, vol. 134, p. 10011.
  19. Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C.D., DiSalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, vol. 126, p. 4043.
  20. Ji, X., Lee, K.T., Holden, R., Zhang, L., Zhang, J., Botton, G.A., Couillard, M., and Nazar, L.F., Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes, Nat. Chem., 2010, vol. 2, p. 286.
  21. Matsumoto, F., Roychowdhury, C., DiSalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation, J. Electrochem. Soc., 2008, vol. 155, p. B148.
  22. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, 2007, vol. 315, p. 493.
  23. Miura, A., Wang, H., Leonard, B.M., Abruña, H.D., and DiSalvo, F.J., Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts, Chem. Mater., 2009, vol. 21, p. 2661.
  24. Kang, Y., Pyo, J.B., Ye, X., Gordon, T.R., and Murray, C.B., Synthesis, shape control, and methanol electro-oxidation properties of Pt–Zn alloy and Pt3Zn intermetallic nanocrystals, ACS Nano, 2012, vol. 6, p. 5642.
  25. Gregoire, J.M., Kostylev, M., Tague, M.E., Mutolo, P.F., van Dover, R.B., DiSalvo, F.J., and Abruña, H.D., High-throughput evaluation of dealloyed Pt–Zn composition-spread thin film for methanol-oxidation catalysis, J. Electrochem. Soc., 2009, vol. 156, p. B160.
  26. Chen, Q., Zhang, J., Jia, Y., Jiang, Z., Xie, Z., and Zheng, L., Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances, Nanoscale, 2014, vol. 6, p. 7019.
  27. Xu, D., Liu, Z.P., Yang, H.Z., Liu, Q.S., Zhang, J., Fang, J.Y., Zou, S.Z., and Sun, K., Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes, Angew. Chem. Int. Ed., 2009, vol. 48, p. 4217.
  28. Xia, B.Y., Wu, H.B., Wang, X., and Lou, X.W., One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction, J. Am. Chem. Soc., 2012, vol. 134, p. 13934.
  29. Sun, X., Jiang, K., Zhang, N., Guo, S., and Huang, X., Crystalline control of {111} bounded Pt3Cu nanocrystals: multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties, ACS Nano, 2015, vol. 9, p. 7634.
  30. Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P., and Wang, X., Ultrathin Pt–Cu nanosheets and nanocones, J. Am. Chem. Soc., 2013, vol. 135, p. 18304.
  31. Xia, Z., Zhang, P., Feng, G., Xia, D., and Zhang, J., Crossed PtCoCu alloy nanocrystals with high-index facets as highly active catalyst for methanol oxidation reaction, Adv. Mater. Interfaces, 2018, vol 5, p. 1.
  32. Wakisaka, M., Mitsui, S., Hirose, Y., Kawashima, K., Uchida, H., and Watanabe, M., Electronic structures of Pt−Co and Pt−Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells atudied by EC−XPS, J. Phys. Chem. B, 2006, vol. 110, p. 23489.
  33. Gasteiger, H.A., Markovic, N.M., and Ross, P.N., Jr., Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface, J. Phys. Chem., 1995, vol. 99, p. 8945.
  34. Grgur, B.N., Zhuang, G., Markovic, N.M., and Ross, P.N., Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface, J. Phys. Chem. B, 1997, vol. 101, p. 3910.
  35. Gasteiger, H.A., Markovic, N., Ross, P.N., Jr., and Cairns, E.J., Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys, J. Phys. Chem., 1994, vol. 98, p. 617.
  36. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hunger, R., and Wieckowski, A., Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.
  37. Ataee-Esfahani, H., Liu, J., Hu, M., Miyamoto, N., Tominaka, S., Wu, K.C.W., and Yamauchi, Y., Mesoporous metallic cells: design of uniformly sized hollow mesoporous Pt–Ru particles with tunable shell thicknesses, Small, 2013, vol. 9, p. 1047.
  38. Garrick, T.R., Diao, W., Tengco, J.M., Stach, E.A., Senanayake, S.D., Chen, D.A., Monnier, J.R., and Weidner, J.W., The effect of the surface composition of Ru–Pt bimetallic catalysts for methanol oxidation, Electrochim. Acta, 2016, vol. 195, p. 106.
  39. Tian, M., Shi, S., Shen, Y., and Yin, H., PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell, Electrochim. Acta, 2019, vol. 293, p. 390.
  40. Lu, S., Eid, K., Ge, D., Guo, J., Wang, L., Wang, H., and Gu, H., One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction, Nanoscale, 2017, vol. 9, p. 1033.
  41. Feng, L., Li, K., Chang, J., Liu, C., and Xing, W., Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells, Nano Energy, 2015, vol. 15, p. 462.
  42. Feng, C., Takeuchi, T., Abdelkareem, M.A., Tsujiguchi, T., and Nakagawa, N., Carbon–CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell, J. Power Sources, 2013, vol. 242, p. 57.
  43. Guo, L., Chen, S., Li, L., and Wei, Z., A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction, J. Power Sources, 2014, vol. 247, p. 360.
  44. La-Torre-Riveros, L., Guzman-Blas, R., Méndez-Torres, A.E., Prelas, M., Tryk, D.A., and Cabrera, C.R., Diamond nanoparticles as a dupport for Pt and PtRu catalysts for direct methanol fuel cells, ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 1134.
  45. Cheng, Y., Xu, C., Shen, P.K., and Jiang, S.P., Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells, Appl. Catal. B: Environ., 2014, vol. 158-159, p. 140.
  46. Nethravathi, C., Anumol, E.A., Rajamathi, M., and Ravishankar, N., Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity, Nanoscale, 2011, vol. 3, p. 569.
  47. Belmesov, A.A., Baranov, A.A., and Levchenko, A.V., Anodic electrocatalysts for fuel cells based on Pt/Ti1 ‒ xRuxO2, Russ. J. Electrochem., 2018, vol. 54, p. 493.
  48. Spasojevic, M., Ribic-Zelenovic, L., Spasojevic, M., and Trisovic, T., The mixture of nanoparticles of RuO2 and Pt supported on Ti as an efficient catalyst for direct formic acid fuel cell, Russ. J. Electrochem., 2019, vol. 55, p. 1350.
  49. Spasojevic, M., Spasojevic, M., and Ribic-Zelenovic, L., A catalyst coated electrode for electrochemical formaldehyde oxidation, Monatsh. Chem.—Chem. Mon., 2020, vol. 151, p. 33.
  50. Profeti, L.P.R., Profeti, D., and Olivi, P., Pt–RuO2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell applications, Int. J. Hydrogen Energy, 2009, vol. 34, p. 2747.
  51. Deng, Y.J., Tian, N., Zhou, Z.Y., Huang, R., Liu, Z.L., Xiao, J., and Sun, S.G., Alloy tetrahexahedral Pd–Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure, Chem. Sci., 2012, vol. 3, p. 1157.
  52. Zhu, E., Li, Y., Chiu, C.Y., Huang, X., Li, M., Zhao, Z., Liu, Y., Duan, X., and Huang, Y., In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability, Nano Res., 2016, vol. 9, p. 149.
  53. Huang, X., Zhao, Z., Fan, J., Tan, Y., and Zheng, N., Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets, J. Am. Chem. Soc., 2011, vol. 133, p. 4718.
  54. Wang, H., Jeong, H.Y., Imura, M., Wang, L., Radhakrishnan, L., Fujita, N., Castle, T., Terasaki, O., and Yamauchi, Y., Shape- and size-controlled synthesis in hard templates: sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles, J. Am. Chem. Soc., 2011, vol. 133, p. 14526.
  55. Zhang, Z.C., Hui, J.F., Liu, Z.C., Zhang, X., Zhuang, J., and Wang, X., Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities, Langmuir, 2012, vol. 28, p. 14845.
  56. Sarmoor, S.S., Hoseini, S.J., Fath, R.H., Roushani, M., and Bahrami, M., Facile synthesis of PtSnZn nanosheet thin film at oil–water interface by use of organometallic complexes: an efficient catalyst for methanol oxidation and p-nitrophenol reduction reactions, Appl. Organometal. Chem., 2018, vol. 32, p. 1.
  57. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, 2014, vol. 343, p. 1339.
  58. Ding, J., Zhu, X., Bu, L., Yao, J., Guo, J., Guo, S., and Huang, X., Highly open rhombic dodecahedral PtCu nanoframes, Chem. Commun., 2015, vol. 51, p. 9722.
  59. Luo, S. and Shen, P.K., Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis, ACS Nano, 2017, vol. 11, p. 11946.
  60. Bu, L., Guo, S., Zhang, X., Shen, X., Su, D., Lu, G., Zhu, X., Yao, J., Guo, J., and Huang, X., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis, Nat. Commun., 2016, vol. 7, p. 1.
  61. Bu, L., Ding, J., Guo, S., Zhang, X., Su, D., Zhu, X., Yao, J., Guo, J., Lu, G., and Huang, X., A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts, Adv. Mater., 2015, vol. 27, p. 7204.
  62. Xia, B.Y., Wu, H.B., Li, N., Yan, Y., Lou, X.W., and Wang, X., One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties, Angew. Chem. Int. Ed., 2015, vol. 54, p. 3797.
  63. Gong, M., Fu, G., Chen, Y., Tang, Y., and Lu, T., Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7301.
  64. Wang, D.Y., Chou, H.L., Cheng, C.C., Wu, Y.H., Tsai, C.M., Lin, H.Y., Wang, Y.L., Hwang, B.J., and Chen, C.C., FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction, Nano Energy, 2015, vol. 11, p. 631.
  65. Nosheen, F., Zhang, Z., Xiang, G., Xu, B., Yang, Y., Saleem, F., Xu, X., Zhang, J., and Wang, X., Three-dimensional hierarchical Pt–Cu superstructures, Nano Res., 2015, vol. 8, p. 832.
  66. Wang, C., Chen, D.P., Sang, X., Unocic, R.R., and Skrabalak, S.E., Size-dependent disorder–order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts, ACS Nano, 2016, vol. 10, p. 6345.
  67. Kang, X., Miao, K., Guo, Z., Zou, J., Shi, Z., Lin, Z., Huang, J., and Chen, S., PdRu alloy nanoparticles of solid solution in atomic scale: size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol, J. Catal., 2018, vol. 364, p. 183.
  68. Park, S., Xie, Y., and Weaver, M.J., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.
  69. Tian, N., Zhou, Z.Y., Sun, S.G., Ding, Y., and Wang, Z.L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science, 2007, vol. 316, p. 732.
  70. Quan, Z., Wang, Y., and Fang, J., High-index faceted noble metal nanocrystals, Acc. Chem. Res., 2013, vol. 46, p. 191.
  71. Waszczuk, P., Lu, G.Q., Wieckowski, A., Lu, C., Rice, C., and Masel, R.I., UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis, Electrochim. Acta, 2002, vol. 47, p. 3637.
  72. Lu, C., Rice, C., Masel, R.I., Babu, P.K., Waszczuk, P., Kim, H.S., Oldfield, E., and Wieckowski, A., UHV, Electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts, J. Phys. Chem. B, 2002, vol. 106, p. 9581.
  73. Watanabe, M. and Motoo, S., Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanal. Chem., 1975, vol. 60, p. 267.
  74. Li, X., Liu, J., Huang, Q., Vogel, W., Akins, D.L., and Yang, H., Effect of heat treatment on stability of gold particle modified carbon supported Pt–Ru anode catalysts for a direct methanol fuel cell, Electrochim. Acta, 2010, vol. 56, p. 278.
  75. Rolison, D.R., Hagans, P.L., Swider, K.E., and Long, J.W., Role of hydrous ruthenium oxide in Pt−Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity, Langmuir, 1999, vol. 15, p. 774.
  76. Long, J.W., Stroud, R.M., Swider-Lyons, K.E., and Rolison, D.R., How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys, J. Phys. Chem. B, 2000, vol. 104, p. 9772.
  77. Galizzioli, D., Tantardini, F., and Trasatti, S., Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, J. Appl. Electrochem., 1975, vol. 5, p. 203.
  78. Burke, L.D. and O’Neill, J.F., Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes, J. Electroanal. Chem., 1979, vol. 101, p. 341.
  79. Franaszczuk, K. and Sobkowski, J., The influence of ruthenium adatoms on the oxidation of chemisorbed species of methanol on a platinum electrode by a radiochemical method, J. Electroanal. Chem., 1992, vol. 327, p. 235.
  80. Comninellis, Ch. and Vercesi, G.P., Problems in DSA® coating deposition by thermal decomposition, J. Appl. Electrochem., 1991, vol. 21, p. 136.
  81. Comninellis, Ch. and Vercesi, G.P., Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 1991, vol. 21, p. 335.
  82. Weast, R.C., Handbook of Chemistry and Physics, 55th ed., Cleveland: CRC Press, 1974–1975.
  83. Spasojevic, M.D., Krstajic, N.V., and Jaksic, M.M., Structure, properties and optimization of an anodic electrocatalyst: RuO2/TiO2 on titanium, J. Mol. Catal., 1987, vol. 40, p. 311.
  84. Spasojevic, M., Ribic-Zelenovic, L., and Spasojevic, P., Microstructure of new composite electrocatalyst and its anodic behavior for chlorine and oxygen evolution, Ceram. Int., 2012, vol. 38, p. 5827.
  85. Spasojevic, M., Krstajic, N., Spasojevic, P., and Ribic-Zelenovic, L., Modelling current efficiency in an electrochemical hypochlorite reactor, Chem. Eng. Res. Des., 2015, vol. 93, p. 591.
  86. Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vukovic, M., and Conway, B.E., The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem., 1977, vol. 81, p. 2271.
  87. Ticanelli, E., Beery, J.G., Paffett, M.T., and Gottesfeld, S., An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface, J. Electroanal. Chem., 1989, vol. 258, p. 61.
  88. Hu, C.C., Lee, C.H., and Wen, T.C., Oxygen evolution and hypochlorite production on Ru–Pt binary oxides, J. Appl. Electrochem., 1996, vol. 26, p. 72.
  89. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.