Examples



mdbootstrap.com



 
Статья
2022

Mechanism of cis-Azobenzene Photoisomerization: Role of the Rydberg 3s-Orbital of the Azo Group


Yu. A. MikheevYu. A. Mikheev
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422030177
Abstract / Full Text

An analysis is performed of data on the femtosecond photoisomerization of cis-azobenzene (cis‑AB) under the action of Vis laser radiation with a wavelength of λex = 435 nm. It is noted that the Rydberg 3s orbital (R3s) of the azo group of cis-AB induces reversible electron (e) wave tautomerization between the e-neutral form of cis-AB (E,\(R_{{{\text{3s}}}}^{0}\)) and the e-polarized form E+,\(R_{{{\text{3s}}}}^{{1-}}\), as with e-tautomerization between the neutral form Z,\(R_{{{\text{3s}}}}^{0}\) and polarized form Z+,\(R_{{{\text{3s}}}}^{{1-}}\) of trans-AB. The orange color of cis-AB is explained by its e‑tautomers E+,\(R_{{{\text{3s}}}}^{{1-}}\) having chromogenic phenylaminyl-type cations (PhAT) like Z+,\(R_{{{\text{3s}}}}^{{1-}}\) in trans-AB; the stronger coloration of cis-AB relative to trans-AB reflects a higher equilibrium proportion of e-tautomers E+,\(R_{{{\text{3s}}}}^{{1-}}\) in cis-AB, relative to the proportion of Z+,\(R_{{{\text{3s}}}}^{{1-}}\) in trans-AB. A mechanism of cis-AB photoisomerization is proposed in which e-tautomers E+*,\(R_{{{\text{3s}}}}^{{1-}}\) excited by pulses with λex = 435 nm undergo transition to the E++*,\(R_{{{\text{3s}}}}^{{2-}}\) state with two PhAT cations. It is shown that the Coulomb repulsion acting in the E++*,\(R_{{{\text{3s}}}}^{{2-}}\) state between PhAT cations pushes them into an intermediate planar cis-state with constant τ = 47 fs. The energy stored in cis-AB is then added to that of photoexcitation, and the E++*,\(R_{{{\text{3s}}}}^{{2-}}\) state is isomerized with constant τ = 170 fs into a planar trans-intermediate (Z++*,\(R_{{{\text{3s}}}}^{{2-}}\)) that relaxes mainly to trans-AB. Schemes of the relaxation channels are given along with reasons for the change in the quantum yields of the cistrans isomerization of AB when the solvent n-heptane is replaced with a water–alcohol mixture.

Author information
  • Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, RussiaYu. A. Mikheev
References
  1. Azobenzene. Optical Properties. https://ru.wikipedia.org/wiki/Azobenzol.
  2. P. P. Birnbaum, J. H. Linford, and D. W. G. Style, Trans. Faraday Soc. 50, 735 (1954).
  3. P. P. Birnbaum and D. W. G. Style, Trans. Faraday Soc. 50, 1192 (1954).
  4. J. W. Sidman, J. Chem. Rev. 58, 689 (1958).
  5. H. H. Jaffe, S.-Ju. Yeh, and R. Gardner, J. Mol. Spectrosc. 2, 120 (1958).
  6. T. Nägele, R. Hoche, W. Zinth, and J. Wachtveitl, Chem. Phys. Lett. 272, 489 (1997).
  7. M. Böckmann, N. L. Doltsinis, and M. Dominik, J. Phys. Chem. A 114, 745 (2010).
  8. M. Pederzoli, J. Pittner, M. Barbatti, and H. Lischka, J. Phys. Chem. A 115, 11136 (2011).
  9. Yu. Harabuchi, M. Ishii, A. Nakayama, T. Noro, and T. Taketsugu, J. Chem. Phys. 138, 4305 (2013).
  10. A. J. Neukirch, L. C. Shamberger, E. Abad, et al., J. Chem. Theory Comput. 10, 14 (2014).
  11. Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 89, 2036 (2015).
  12. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1499 (2018).
  13. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 92, 1911 (2018).
  14. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 369 (2019).
  15. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 1411 (2019).
  16. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 196 (2020).
  17. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 1716 (2020).
  18. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 94, 2360 (2020).
  19. Yu. A. Mikheev, L. N. Guseva, and Yu. A. Ershov, Russ. J. Phys. Chem. A 89, 224 (2015).
  20. Yu. A. Mikheev, Russ. J. Phys. Chem. A 95, 2332 (2021).
  21. B. Robin and W. T. Simpson, J. Chem. Phys. 36, 580 (1962).
  22. J. M. Robertson, J. Chem. Soc., 232 (1939).
  23. G. C. Hampson and J. M. Robertson, J. Chem. Soc., 409 (1941).
  24. T. Tsui, H. Takashima, H. Takeuchi, T. Egava, and Sh. Konaka, J. Phys. Chem. A 105, 9347 (2001).
  25. E. Clar, Polycyclic Hydrocarbons (Springer, Berlin, 1964), Vol. 1.
  26. G. S. Hartley and R. J. W. le Fèvre, J. Chem. Soc., 531 (1939).
  27. G. J. Brealey and M. Kasha, J. Am. Chem. Soc. 77, 4462 (1955).
  28. D. L. Beveridge and H. H. Jaffe, J. Am. Chem. Soc. 88, 1948 (1966).
  29. F. Gerson, E. Heilbronner, A. van Veen, and B. M. Wepster, Helv. Chim. Acta 43, 1889 (1960).
  30. S. F. Mason, J. Chem. Soc., 1240 (1959).
  31. G. A. Coulson, Valence (Oxford Univ. Press, London, 1961).
  32. J. Calvert and J. Pitts, Photochemistry (Wiley, New York, 1967).
  33. K. Higashi, H. Baba, and A. Rembaum, Quantum Organic Chemistry (Wiley-Interscience, New York, 1965).
  34. V. F. Kramarenko and B. M. Turkevich, Analysis of Pesticides (Khimiya, Moscow, 1978), p. 248 [in Russian].
  35. G. D. Chukin, The Structure of Aluminum Oxide and Hydrodesulfurization Catalysts. Reaction Mechanisms (Paladin, Printa, Moscow, 2010) [in Russian].
  36. D. Jacquemin, J. Preat, E. A. Perpète, et al., Int. J. Quantum Chem. 111, 4224 (2011).
  37. F. Zapata, M. A. Fernandez-Gonzalez, D. Rivero, et al., J. Chem. Theory Comput. 10, 312 (2014).
  38. P. Bortolus and S. Monti, J. Phys. Chem. 83, 648 (1979).
  39. H. Rau and E. Lüddecke, J. Am. Chem. Soc. 104, 1616 (1982).
  40. H. Rau, J. Photochem. 26, 221 (1984).
  41. Ya. Hirose, H. Yui, and Ts. Sawada, J. Phys. Chem. A 106, 3067 (2002).
  42. Yu. A. Mikheev and Yu. A. Ershov, Russ. J. Phys. Chem. A 93, 1195 (2019).
  43. A. N. Terenin, Photonics of Molecules of Dyes and Related Organic Compounds (Nauka, Leningrad, 1967), pp. 17, 18 [in Russian].
  44. Ch. M. Stuart, R. R. Frontiera, and R. A. Mathies, J. Phys. Chem. A 111, 12072 (2007).