Synthesis and Study of Conductivity of Al-Substituted Li7La3Zr2O12

G. B. Kunshina G. B. Kunshina , V. I. Ivanenko V. I. Ivanenko , I. V. Bocharova I. V. Bocharova
Российский электрохимический журнал
Abstract / Full Text

The method of solid-phase sintering was used to synthesize samples of lithium-conducting Li6.4Al0.2La3Zr2O12 solid electrolyte with a garnet structure. Higher technological efficiency of the method of synthesis was achieved owing to using low-melting nitrate crystalline hydrates of ZrO(NO3)2 · 2H2O and La(NO3)3 · 6H2O as initial substances: formation of the melt considerably intensified the interaction, caused a decrease in the duration and energy consumption of the method, and provided the presence of only a single phase of powdered solid electrolyte with a high Li-ion conductivity. The excess of the lithium-containing component (Li2CO3) in the mix was varied to compensate lithium losses in the course of the high-temperature treatment. Specific ionic conductivity of Li6.4Al0.2La3Zr2O12 was determined using the impedance spectroscopy technique and was 2 × 10–4 S/cm at the room temperature.

Author information
  • Tananaev Institute of Chemistry, Subdivision of Federal Research Center “Kola Scientific Center, Russian Academy of Sciences”, 184209, Apatity, Murmansk oblast, Russia

    G. B. Kunshina, V. I. Ivanenko & I. V. Bocharova

  1. Cao, C., Li, Z.-B., Wang, X.-L., Zhao, X.-B., and Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries, Front. Energy Res., 2014, vol. 2, A.25, p. 1.
  2. Pantyukhina, M.I., Molchanova, N.G., Martem’yanova, Z.S., and Batalov, N.N., Influence of Me–Zr substitution of lithium–lanthanum titanate Li3xLa2/3 – xTi1 – yMeyO3 B-sublattice on ion conductivity, Elektrokhim. Energ., 2004, vol 4, no. 4, p. 215.
  3. Murugan, R., Thangadurai, V., and Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12, Angew. Chem. Int. Ed., 2007, vol. 46, p. 7778.
  4. Thangadurai, V., Narayanan, S., and Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 2014, vol. 43, p. 4714.
  5. Kotobuki, M., Kanamura, K., Sato, Y., and Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte, J. Power Sources, 2011, vol. 196, p. 7750.
  6. Il’ina, E.A., Saetova, N.S., and Raskovalov, A.A., All-Solid-State Battery Li–Ga–Ag|Li7La3Zr2O12 + Li2O–Y2O3–SiO2|Li2O–V2O5–B2O3, Russ. J. Applied Chem., 2016, vol. 89, no. 9, p. 1434.
  7. Kumar, P.J., Nishimura, K., Senna, M., Düvel, A., Heitjans, P., Kawaguchi, T., Sakamoto, N., Wakiya, N., and Suzuki, H., A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery, RSC Adv., 2016, vol. 6, p. 62656.
  8. Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L.S., and Murugan, R., Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications, Progr. Mater. Sci., 2017, vol. 88, p. 325.
  9. Il’ina, E.A., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods, J. Power Sources, 2012, vol. 201, p. 169.
  10. Yoshida, T., Honda, A., and Sato, Y., Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same, EEC Patent no. EP 2159867 A1, 2010.
  11. Shao, C., Liu, H., Yu, Z., Zheng, Z., Sun, N., and Diao, C., Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method, Solid State Ionics, 2016, vol. 287, p. 13.
  12. Zhao, P., Cao, G., Jin, Z., Ming, H., Wen, Y., Xu, Y., Zhu, X., Xiang, Y., and Zhang, S., Self-consolidation mechanism and its application in the preparation of Al-doped cubic Li7La3Zr2O12, Mater. Des., 2018, vol. 139, p. 65.
  13. Weller, J.M., Whetten, J.A., and Chan, C.K., Synthesis of Fine Cubic Li7La3Zr2O12 Powders in Molten LiCl–KCl Eutectic and Facile Densification by Reversal of Li+/H+ Exchange, ACS Appl. Energy Mater., 2018, vol. 1, no. 2, p. 552.
  14. Awaka, J., Kijima, N., Hayakawa, H., and Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem., 2009, vol. 182, p. 2046.
  15. Il’ina, E.A., Raskovalov, A.A., Batalov, N.N., and Aleksandrov A.V., Optimization of the preparation conditions of Li7La3Zr2O12 ceramic electrolyte for lithium power cells, Russ. J. Applied Chem., 2013, vol. 86, no. 8, p. 1225.
  16. Wachter-Welzl, A., Kirowitz, J., Wagner, R., Smetaczek, S., Brunauer, G.C., Bonta, M., Rettenwander, D., Taibl, S., Limbeck, A., Amthauer, G., and Fleiga, J., The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics, Solid State Ionics, 2018, vol. 319, p. 203.
  17. Blumental, U.B., Khimiya tsirkoniya (Zirconium chemistry), Moscow: IsdatInLit, 1963.
  18. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Synthesis and study of ion conductivity of Li3xLa2/3 – xTiO3, Russ. J. Electrochem., 2015, vol. 51, p. 551.
  19. Cheng, L., Wu, C.H., Jarry, A., Chen, W., Ye, Y., Zhu, J., Kostecki, R., Persson, K., Guo, J., Salmeron, M., Chen, G., and Doeff, M., Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes, ACS Appl. Mater. Interfaces, 2015, vol. 7 (32), p. 17649.
  20. Sharafi, A., Yu, S., Naguib, M., Lee, M., Ma, C., Meyer, H.M., Nanda, J., Chi, M., Siegel, D.J. and Sakamoto, J., Impact of air exposure and surface chemistry on Li – Li7La3Zr2O12 interfacial resistance, J. Mater. Chem. A, 2017, vol. 5, p. 13475.
  21. Xia, W., Xu, B., Duan, H., Tang, X., Guo, Y., Kang, H., Li, H., and Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2, J. Amer. Ceram. Soc., 2017, vol. 100, no. 7, p. 2832.
  22. Kobi, S. and Mukhopadhyay, A., Structural (in)stability and spontaneous cracking of Li–La-zirconate cubic garnet upon exposure to ambient atmosphere, J. Europ. Ceram. Soc., 2018, vol. 38, p. 4707.