Examples



mdbootstrap.com



 
Статья
2020

Synthesis of magnetic hybrid magnetite—gold nanoparticles


S. V. SaikovaS. V. Saikova, T. V. TrofimovaT. V. Trofimova, A. Yu. PavlikovA. Yu. Pavlikov, D. V. KarpovD. V. Karpov, D. I. ChistyakovD. I. Chistyakov, Yu. L. MikhlinYu. L. Mikhlin
Российский химический вестник
https://doi.org/10.1007/s11172-020-2899-z
Abstract / Full Text

Methods for the synthesis of hybrid nanoparticles, consisting in the simultaneous modification of the magnetic core and reduction of gold on the surface using various reagents, were proposed and developed. Depending on synthesis conditions, various hybrid nanoparticles were obtained, namely, hybrid nanoparticles decorated with gold nuclei and hybrid nanoparticles of the core—shell type. The obtained products can be used as promising materials for catalytic and biomedical applications.

Author information
  • Siberian Federal University, 79 Svobodny prosp., 660041, Krasnoyarsk, Russian FederationS. V. Saikova, T. V. Trofimova, A. Yu. Pavlikov, D. V. Karpov & D. I. Chistyakov
  • Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Build. 24, 50 ul. Akademgorodok, 660036, Krasnoyarsk, Russian FederationS. V. Saikova & Yu. L. Mikhlin
References
  1. S. Banerjee, N. P. Kumar, A. Srinivas, S. Roy, J. Hazardous Mater., 2019, 375, 216; DOI: https://doi.org/10.1016/j.jhazmat.2019.04.085.
  2. B. Xu, H. Dou, K. Sun, J. Ding, W. Shi, X. Guo, Langmuir, 2011, 27, 12134; DOI: https://doi.org/10.1021/la202096x.
  3. S. Rajkumar, M. Prabaharan, Colloids Surfaces, B, 2019, 174, 252; DOI:https://doi.org/10.1016/j.colsurfb.2018.06.051.
  4. C. Ma, H. Shao, S. Zhan, P. Hou, X. Zhang, Y. Chai, Composite Interfaces, 2019, 26, 537; DOI: https://doi.org/10.1080/09276440.2018.1511217.
  5. G. Olah, O. Faroog, G. K. S. Prakash, in IOP Conf. Series: Materials Science and Engineering, Institute of Physics Publishing, Majitar, 2018.
  6. N. Gupta, P. Pant, C. Gupta, P. Goel, A. Jain, S. Anad, A. Pundir, Materials Res. Innovat., 2018, 22, 434; DOI: https://doi.org/10.1080/14328917.2017.1334846.
  7. D. I. Chistyakov, T. V. Trofimova, S. V. Saykova, D. I. Saykova, Tez. dokl. XI Mezhreg. nauchno-praktich. konf. [Abstracts of the XI Interregional Scientific and Practical Conference] (Krasnoyarsk, May 17, 2018), Krasnoyarskiy gos. ped. un-t, Krasnoyarsk, 2018, p. 139 (in Russian).
  8. D. Chen, Q. Tang, X. Li, X. Zhou, J. Zang, W. Xue, J. Xiang, C. Guo, Int. J. Nanomed., 2012, 7, 4973; DOI: https://doi.org/10.2147/IJN.S35140.
  9. I. V. Milto, A. Yu. Grishanova, T. K. Klimenteva, I. V. Suhodolo, G. Yu. Vasukov, V. V. Ivanova, Biochemistry (Moscow), 2014, 79, 1245; DOI: https://doi.org/10.1134/S0006297914110121.
  10. Z. Yarjanli, K. Ghaedi, A. Esmaeili, S. Rahgozar, A. Zarrabi, BMC Neurosci., 2017, 18, 51; DOI: https://doi.org/10.1186/s12868-017-0369-9.
  11. T. V. Trofimova, S. V. Saykova, D. I. Saykova, D. I. Chistyakov, J. Siber. Fed. Univ. Chem., 2016, 9 (4), 496; DOI: https://doi.org/10.17516/1998-2836-2016-9-4-496-503.
  12. I. Y. Goon, L. M. H. Lai, M. Lim, P. Munroe, J. J. Gooding, R. Amal, Chem. Mater., 2009, 21, 673; DOI: https://doi.org/10.1021/cm8025329.
  13. L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Vilard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, K. P. Johnston, ACS Nano, 2009, 3, 2686; DOI: https://doi.org/10.1021/nn900440e.
  14. A. Mikalauskaite, G. Niaura, R. Kondrotas, A. Jagminas, J. Phys. Chem., 2015, 119, 17398; DOI: https://doi.org/10.1021/acs.jpcc.5b03528.
  15. Powder Diffraction File JCPDS, Version 33, 2018.
  16. T. Pal, S. De, N. R. Jana, N. Pradhan, R. Mandal, A. Pal, Langmuir, 1998, 14, 4724; DOI: https://doi.org/10.1021/la980057n.
  17. Yu. Yu. Lur’e, Spravochnik po analiticheskoy khimii [Handbook of Analytical Chemistry], Khimiya, Moscow, 1989, 448 p. (in Russian).
  18. A. V. Vujačić, J. Z. Savića, S. P. Soviljb, K. Mészáros Szécsényic, N. Todorovićd, M. Z. Petkovića, V. M. Vasića, Polyhedron, 2009, 28, 593; DOI: https://doi.org/10.1016/j.poly.2008.11.045.
  19. J. D. Atwood, in Inorganic and Organometallic Reaction Mechanisms, VCH Publishers, New York, 1997, pp. 312.
  20. R. A. Brizzolara, Surface Sci. Spectr., 1996, 4, 96; DOI: https://doi.org/10.1116/1.1247810.
  21. L. Thomsen, M. T. Wharmby, D. P. Riley, G. Held, M. J. Gladys, Surface Sci., 2009, 603, 1253; DOI: https://doi.org/10.1016/j.susc.2009.03.014
  22. P. Gobbo, M. C. Biesinger, M. S. Workentin, Chem. Commun., 2013, 49, 2831; DOI: https://doi.org/10.1039/C3CC00050H.
  23. M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev., 2013, 42, 3371; DOI: https://doi.org/10.1039/C3CS35480F.
  24. S. Roy, M. A. Pericas, Org. Biomolec. Chem., 2009, 7, 2669; DOI: https://doi.org/10.1039/B903921J.