Статья
2018

Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid


Wen-Jin Shen Wen-Jin Shen , Ji-Long Sang Ji-Long Sang , Ling Cai Ling Cai , Yong-Jun Li Yong-Jun Li
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518110071
Abstract / Full Text

AuPt alloy catalysts with various compositions have been successfully prepared simply by one-step co-reduction of Au and Pt precursors involving sodium citrate as stabilizer and reductant. XRD, TEM and EDX element mapping analysis confirmed that the resulting AuPt nanoparticles are single-phase alloys rather than random mixtures of tiny Au and Pt particles. Compared with Pt/C, alloying Au with Pt can effectively alter the kinetic process of formic acid oxidation, reducing the generation of CO-like intermediates. Au81Pt19 displays superior electrocatalytic activity and durability, ~11 times in the mass activity better than commercial Pt/C and may be of practical significance for the commercialization of direct formic acid fuel cell.

Author information
  • State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China

    Wen-Jin Shen, Ji-Long Sang, Ling Cai & Yong-Jun Li

References
  1. Uhm, S., Lee, H.J., Kwon, Y., and Lee, J., A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem., Int. Ed., 2008, vol. 47, p. 10163.
  2. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W.B., Carbon-supported Pd−Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.
  3. Osawa, M., Komatsu, K., Samjeske, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutierrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem., Int. Ed., 2011, vol. 50, p. 1159.
  4. Miki, A., Ye, S., and Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions, Chem. Commun., 2002, p. 1500.
  5. John, J., Wang, H., Rus, E.D., and Abruña, H.D., Mechanistic studies of formate oxidation on platinum in alkaline medium, J. Phys. Chem. C, 2012, vol. 116, p. 5810.
  6. Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell, Angew. Chem., Int. Ed., 2006, vol. 45, p. 981.
  7. Habas, S.E., Lee, H., Radmilovic, V., Somorjai, G.A., and Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 2007, vol. 6, p. 692.
  8. Yu, Y., Hu, Y., Liu, X. Deng, W., and Wang, X., The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement, Electrochim. Acta, 2009, vol. 54, p. 3092.
  9. Podlovchenko, B.I., Maksimov, Y.M., and Maslakov, K.I., Electrocatalytic properties of Au electrodes decorated with Ptsubmonolayers by galvanic displacement of copper adatoms, Electrochim. Acta, 2014, vol. 130, p. 351.
  10. Jiang, Z. and Jiang, Z.-J., Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation, Electrochim. Acta, 2011, vol. 56, p. 8662.
  11. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.
  12. Zhou, L.-N., Zhang, X.-T., Wang, Z.-H., Guo, S., and Li, Y.-J., Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation, Chem. Commun., 2016, vol. 52, p. 12737.
  13. Uhm, S., Chung, S.T., and Lee, J., Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell, Electrochem. Commun., 2007, vol. 9, p. 2027.
  14. Lee, J.K., Jeon, H., Uhm, S., and Lee, J., Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells, Electrochim. Acta, 2008, vol. 53, p. 6089.
  15. Melke, J., Schoekel, A., Dixon, D., Cremers, C., Ramaker, D.E., and Roth, C., Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by Operando X-ray absorption spectroscopy, J. Phys. Chem. C, 2010, vol. 114, p. 5914.
  16. Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, vol. 126, p. 4043.
  17. Zhang, X.-T., Zhou, L.-N., Shen, Y.-Y., Liu, H.-T., and Li, Y.-J., Superior electrocatalytic activity of ultrathin PtPdBi nanowires towards ethanol electrooxidation, RSC Adv., 2016, vol. 6, p. 58336.
  18. Zhao, Y., Ye, C., Liu, W., Chen, R., and Jiang, X., Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application, Angew. Chem., Int. Ed., 2014, vol. 53, p. 8127.
  19. Gan, Q.-M., Tao, L., Zhou, L.-N., Zhang, X.-T., Wang, S., and Li, Y.-J., Directional coalescence growth of ultralong Au93Pt7alloy nanowires and their superior electrocatalytic performance in ethanol oxidation, Chem. Commun., 2016, vol. 52, p. 5164.
  20. Choi, J.-H., Jeong, K.-J., Dong, Y., Hanb, J., Limb, T.-H., Lee, J.-S., and Sung, Y.-E., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.
  21. Choi, J.-H., Jeong, K.-J., Dong, Y., Han, J., Lim, T.-H., Lee, J.-S., Sung, and Y.-E., Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells, J. Power Sources, 2006, vol. 163, p. 71.
  22. Yong, Q., Wang, C., and Le, Z.G., Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant, Appl. Surf. Sci., 2011, vol. 257, p. 10758.
  23. Vega, A.A. and Newman, R.C., Nanoporous metals fabricated through electrochemical dealloying of Ag–Au–Pt with systematic variation of Au:Pt ratio, J. Electrochem. Soc., 2014, vol. 161, p. C1.
  24. Jin, H.-J., Wang, X.-L., Parida, S., Wang, K., Seo, M., and Weissmüller, J., Nanoporous Au−Pt alloys as large strain electrochemical actuators, Nano Lett., 2010, vol. 10, p. 187.
  25. Xu, J., Zhang, C., Wang, X., Ji, H., Zhao, C., Wang, Y., and Zhang, Z., Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acidoxidation, Green Chem., 2011, vol. 13, p. 1914.
  26. Li, D., Meng, F., Wang, H., Jiang, X., and Zhu, Y., Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards for mic acid electro-oxidation, Electrochim. Acta, 2016, vol. 190, p. 852.
  27. Xu, J.B., Zhao, T.S., and Liang, Z.X., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.
  28. Ballarin, B., Gazzano, M., Scavetta, E., and Tonelli, D., One-step electrosynthesis of bimetallic Au–Pt nanoparticles on indium tin oxide electrodes: effect of the deposition parameters, J. Phys. Chem. C, 2009, vol. 113, p. 15148.
  29. Liu, J., Cao, L., Huang, W., and Li, Z., Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 3552.
  30. Yamauchi, Y., Tonegawa, A., Komatsu, M., Wang, H., Wang, L., Nemoto, Y., Suzuki, N., and Kuroda, K., Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance, J. Am. Chem. Soc., 2012, vol. 134, p. 5100.
  31. Vanýsek, P., Electrochemical Series, in CRC Handbook of Chemistry and Physics, 87th ed., Lide, D.R., Ed., Boca Raton, FL: Taylor and Francis, 2007.
  32. Yin, J., Fang, B., Luo, J., Wanjala, B., Mott, D., Loukrakpam, R., Ng, M.S., Li, Z., Hong, J., Whittingham, M.S., and Zhong, C.J., Nanoscale alloying effect of gold–platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium–oxygen battery, Nanotechnology, 2012, vol. 23, p. 305404.
  33. Zhang, S., Shao,Y., Yin, G., and Lin, Y., Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation, J. Power Sources, 2010, vol. 195, p. 1103.
  34. Lee, J.K., Lee, J., Han, J., Lim, T.-H., Sung, Y.-E., and Tak, Y., Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell, Electrochim. Acta, 2008, vol. 53, p. 3474.
  35. Jana, N.R., Gearheart, L., and Murphy, C.J., Seedmediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 2001, vol. 13, p. 1389.
  36. Cabello, G., Davoglio, R.A., Hartl, F.W., Marco, J.F., Pereira, E.C., Biaggio, S.R., Varela, H., and Cuesta, A., Microwave-assisted synthesis of Pt–Au nanoparticles with enhanced electrocatalytic activity for the oxidation of formic acid, Electrochim. Acta, 2017, vol. 224, p. 56.
  37. Ponec, V. and Bond, G.C., Catalysis by Metals and Alloys, Amsterdam: Elsevier, 1995.
  38. Luo, J., Maye, M.M., Petkov, V., Kariuki, N.N., Wang, L.Y., Njoki, P., Mott, D., Lin, Y., and Zhong, C.J., Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions, Chem. Mater., 2005, vol. 17, p. 3086.
  39. Vidaliglesias, F.J., Aránais, R.M., Sollagullón, J., Herrero, E., and Feliu, J.M., Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes, ACS Catal., 2012, vol. 2, p. 901.
  40. Hu, J., Li, H., Gan, Q.-M., and Li, Y.-J., Threedimensional porous Au nanocoral structure decorated with Pt submonolayer via galvanic displacement of copper adatoms for electrooxidation of formic acid, Russ. J. Electrochem., 2016, vol. 52, p. 355.
  41. Kim, Y., Kim, H.J., Kim, Y.S., Choi, S.M., Seo, M.H., and Kim, W.B., Shape-and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation, J. Phys. Chem. C, 2012, vol. 116, p. 18093.
  42. Zhang, S., Shao, Y., Liao, H.-G., Liu, J., Aksay, I.A., Yin, G., and Lin, Y., Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation, Chem. Mater., 2011, vol. 23, p. 1079.
  43. Peng, Z. and Yang, H., PtAu bimetallic heteronanostructures made by post-synthesis modification of Pton-Au nanoparticles, Nano Res., 2009, vol. 2, p. 406.
  44. Bus, E. and van-Bokhoven, J.A., Electronic and geometric structures of supported platinum, gold, and platinum−gold catalysts, J. Phys. Chem. C, 2007, vol. 111, p. 9761.
  45. Kumar, S.S. and Phani, K.L.N., Exploration of unalloyed bimetallic Au–Pt/C nanoparticles for oxygen reduction reaction, J. Power Sources, 2009, vol. 187, p. 19.