Examples



mdbootstrap.com



 
Статья
2018

The Influence of Modification on Crystal Lattice Stability of Austenite in Stainless Steel


I. A. KurzinaI. A. Kurzina, A. I. PotekaevA. I. Potekaev, N. A. PopovaN. A. Popova, E. L. NikonenkoE. L. Nikonenko, T. V. DementT. V. Dement, A. A. KlopotovA. A. Klopotov, V. V. KulaginaV. V. Kulagina, V. A. KlimenovV. A. Klimenov
Российский физический журнал
https://doi.org/10.1007/s11182-018-1452-0
Abstract / Full Text

Using the methods of electron diffraction microscopy and X-ray diffraction analysis, the influence of alloying of the austenitic steel, Grade 110H13, with chromium and vanadium, as well as high-melting, ultrafine-grained TiO2, ZrO2 powders and Na3AlF6 cryolite on its structural-phase state and microstructure is investigated. It is shown that the matrix of non-modified steel is completely austenitic and consists of an iron-based solid solution and the interstitial (C, N, O and other) and substitutional (Cr, V and other) atoms simultaneously. Alloying with chromium and vanadium changes neither its phase composition nor defect structure, while alloy modification results in qualitatively new structural features: γ → ε-transformation, high-intensity microtwinning, defect structure changes, and a sharp increase in the scalar dislocation density. The features of the deformation-induced microtwinning and ε-martensite plates identified in the modified steel promote revealing additional microtwin systems in the matrix γ-phase, which result in structural changes making it possible to classify it as a γ′-phase. It is found out that an introduction of modifying additions gives rise to the following sequence of structural-phase transformations: γ→γ′→(γ′ +ε). The experimental data obtained demonstrate that as a result of modification the crystal lattice transits into a low-stability state. This transition is accompanied by marked structural-phase changes consisting in the formation of several microtwin systems and γ → ε-transformation. These structural-phase changes in the modified steel are due to the crystal-lattice transition into the low-stability state, followed by new structural-phase alterations.

Author information
  • National Research Tomsk State University, Tomsk, RussiaI. A. Kurzina, A. I. Potekaev, N. A. Popova, E. L. Nikonenko & A. A. Klopotov
  • Tomsk State Architecture and Building University, Tomsk, RussiaN. A. Popova, E. L. Nikonenko, T. V. Dement & A. A. Klopotov
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaN. A. Popova
  • National Research Tomsk Polytechnic University, Tomsk, RussiaE. L. Nikonenko & V. A. Klimenov
  • V. D. Kuznetsov Siberian Physical Technical Institute at Tomsk State University, Tomsk, RussiaA. I. Potekaev & V. V. Kulagina
  • Siberian State Medical University, Tomsk, RussiaV. V. Kulagina
References
  1. T. F. Volynova, High-Manganese Steels and Alloys [in Russian], Metallurgiya, Moscow (1988).
  2. E. G. Astafurova, M. S. Tukeeva, and Yu. I. Chumlyakov, Russ. Phys. J., 50, No. 10, 959–963 (2007).
  3. V. N. Udodov, A. A. Popov, E. V. Kozlov, et al., Russ. Phys. J., 43, No. 8, 621–626 (2000).
  4. S. B. Sant and R. W. Smith, Strength of Metals and Alloys (ICSMA 7), in: Proc. 7th Int. Conf. on the Strength of Metals and Alloys, 219–224, Montreal, Canada (1985).
  5. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on the Structural-Phase Transformations in the Pre-Transitional Region of Metallic Systems [in Russian], (Ed. A. I. Potekaev), NTL Publ., Tomsk (2014).
  6. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems under Thermal-Force Loading [in Russian], (Ed. A. I. Potekaev), NTL Publ., Tomsk (2015).
  7. V. V. Kulagina and A. I. Potekaev, Izv. Vyssh. Uchebn. Zaved. Fiz., 54, No. 11/3, 369–376 (2011).
  8. P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).
  9. A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).
  10. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).
  11. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 11, 1248–1257 (2013).
  12. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 56, No. 6, 215–227 (2013).
  13. A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 620–629 (2017).
  14. A. I. Potekaev, A. A. Klopotov, L. I. Trishkina, Izvestiya RAS. Ser. Fiz., 80, No. 11, 1576–1578 (2016).
  15. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2017).
  16. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, V. V. Kulagina, et al., Russ. Phys. J., 54, No. 9, 1012–1023 (2011)
  17. A. I. Potekaev, M. M. Morozov, A. A. Klopotov, Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., 58, No. 8, 589–596 (2015).
  18. N. Popova, T. Dement, E. Nikonenko, et al., in: AIP Conf. Proc., 1800, 030001 (1–7) (2017).
  19. I. N. Bogachev and T. D. Eysmondt, Fiz. Met. Metalloved., 30, No. 6, 1213–1220 (1970).
  20. L. I. Lysak and B. I. Nikolin, Physical Fundamentals of Heat Treatment of Steel [in Russian], Tekhnika, Kiev (1975).
  21. P. Yu. Volosevich, Metallofizika, Iss. 75, 43–48 (1979).