Examples



mdbootstrap.com



 
Статья
2011

Sensors based on SnO2 + In2O3 composite films for detecting CO in air


T. V. BelyshevaT. V. Belysheva, V. F. GromovV. F. Gromov, G. N. GerasimovG. N. Gerasimov, E. Yu. SpiridonovaE. Yu. Spiridonova, S. A. BondarenkoS. A. Bondarenko, L. I. TrakhtenbergL. I. Trakhtenberg
Российский журнал физической химии А
https://doi.org/10.1134/S0036024411060100
Abstract / Full Text

The sensor properties of nanostructured films of SnO2, In2O3, and their combinations for detecting CO in air in the temperature range of 330–520°C were investigated. It was found that SnO2 films show the least sensitivity to CO. Sensitivity grows as the concentration of In2O3 in SnO2 increases, and it reaches its maximum value in pure In2O3. At the same time, the maximum of sensitivity to CO in air shifts towards low temperatures. Sensor response time was found to be about 1 s for the studied SnO2 and In2O3 films, and about 0.5 s for the composite film. The mechanism of sensor sensitivity for the studied metal oxide films in detecting CO in air is discussed.

Author information
  • Karpov Research Institute of Physical Chemistry (Russian State Scientific Center), ul. Vorontsovo pole 10, Moscow, 103064, RussiaT. V. Belysheva, V. F. Gromov, G. N. Gerasimov, E. Yu. Spiridonova, S. A. Bondarenko & L. I. Trakhtenberg
  • Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 117977, RussiaL. I. Trakhtenberg
References
  1. N. Yamazoe and K. Shimanoe, Sens. Actuat. B 128, 566 (2008).
  2. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).
  3. W. J. Moon, J. H. Yu, and G. M. Choi, Sens. Actuat. B 87, 464 (2002).
  4. G. Neri, A. Bonavita, G. Micali, et al., Sens. Actuat. B 130, 222 (2008).
  5. C. Aifan, H. Xiaodong, T. Zhangfa, et al., Sens. Actuat. B 115, 316 (2006).
  6. S. Ahlers, G. Muller, and T. Doll, Sens. Actuat. B 107, 587 (2005).
  7. G. S. Korotchenkov, S. V. Dmitriev, and V. I. Brynzari, Sens. Actuat. B 54, 191 (1999).
  8. T. V. Belysheva, G. N. Gerasimov, V. F. Gromov, et al., Zh. Fiz. Khim. 84(9), 1 (2010) [Russ. J. Phys. Chem. A 84, 1554 (2010)].
  9. A. L. Efros, Physics and Geometry of Disorder: Percolation Theory (Nauka, Moscow, 1982; Imported Pub., 1987).
  10. H. Gleiter, J. Weissmuller, O. Wollersheim, and R. Wurschum, Acta Mater. 49, 737 (2001).
  11. V. Zaporojtchenko, K. Behnke, A. Thran, et al., Appl. Surf. Sci. 144–145, 335 (1999).
  12. J. A. Blackman, Physica 220, 85 (1995).
  13. A. Helwig, G. Muller, G. Sberveglieri, and G. Faglia, Sens. Actuat. B 126, 174 (2007).