Examples



mdbootstrap.com



 
Статья
2021

Complexes of Polyethylenimine with Copper and Cobalt Ions as Precursors for Preparing Metal Nanoparticles


A. S. OzerinA. S. Ozerin, T. S. KurkinT. S. Kurkin, F. S. RadchenkoF. S. Radchenko, Yu. V. ShulevichYu. V. Shulevich, I. A. NovakovI. A. Novakov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221020105
Abstract / Full Text

Conditions were determined for the formation of a ternary complex of polyethylenimine with copper and cobalt ions, ensuring the predominant binding of the metal ions with the macromolecule of the polyethylenimine stabilizer. Metal particles were prepared under the conditions of different binding of metal ions with the stabilizer. The reduction of cobalt and copper ions in the presence of polyethylenimine yields Cu and Co metal nanoparticles irrespective of the mode of metal ion binding with the stabilizer. The metal particles obtained using the preliminarily prepared ternary complex of polyethylenimine with Cu2+ and Co2+ ions have approximately spherical shape and smaller characteristic size compared to the particles prepared without this complex. In the latter case, the particles are anisometric aggregates elongated in one direction.

Author information
  • Volgograd State Technical University, 400005, Volgograd, RussiaA. S. Ozerin, F. S. Radchenko, Yu. V. Shulevich & I. A. Novakov
  • Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, 117393, Moscow, RussiaT. S. Kurkin
References
  1. Rosi, N. and Mirkin, C.A., Chem. Rev., 2005, vol. 105, pp. 1547–1562. https://doi.org/10.1021/cr030067f
  2. Ellert, O.G., Novotortsev, V.M., Tsodikov, M.V., and Nikolaev, S.A., Russ. Chem. Rev., 2014, vol. 83, no. 8, pp. 718–732. https://doi.org/10.1070/RC2014v083n08ABEH004432 
  3. Papisov, I.M., Polym. Sci. Ser. B., 1997, vol. 39, pp. 122–133.
  4. Sergeev, B.M., Lopatina, L.I., Prusov, A.N., and Sergeev, G.B., Colloid J., 2005, vol. 67, no. 1, pp. 72–78. https://doi.org/10.1007/s10595-005-0055-y 
  5. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., Nat. Meth., 2012, vol. 9, pp. 671–675. https://doi.org/10.1038/nmeth.2089
  6. Ustyakina, D.R., Chevtaev, A.S., Tabunshchikov, A.I., Ozerin, A.S., Radchenko, F.S., and Novakov, I.A., Polym. Sci. Ser., 2019, vol. 61, pp. 261–265. https://doi.org/10.1134/S1560090419030151 
  7. Novakov, I.A., Radchenko, F.S., Ozerin, A.S., Chevtaev, A.S., Tabunshchikov, A.I., and Ustyakina, D.R., Izv. Volgogr. Gos. Tekh. Univ., Ser. Khim. Tekhnol. Elementoorg. Monom. Polim. Mater., 2019, no. 5(228), pp. 74–78.
  8. Kislenko, V.N. and Oliynyk, L.P., J. Polym. Sci., Part A: Polym. Chem., 2002, vol. 40, pp. 914–922. https://doi.org/10.1002/pola.10157
  9. Zezin, A.A., Klimov, D.I., Zezina, E.A., Mkrtchyan, K.V., and Feldman, V.I., Radiat. Phys. Chem., 2020, vol. 169, ID 108076. https://doi.org/10.1016/j.radphyschem.2018.11.03
  10. Korir, D.K., Gwalani, B., Joseph, A., Kamras, B., Arvapally, R.K., Omary, M.A., and Marpu, S.B., Nanomaterials, 2019, vol. 9, pp. 596–601. https://doi.org/10.3390/nano9040596
  11. Donghong, D., Huihong, L., Xiu, Y., Huikai, W., and Shibin, L., J. Power Sources, 2015, vol. 293, pp. 292–300. https://doi.org/10.1016/j.jpowsour.2015.05.086