Статья
2022

Heteroatom-Modified Carbon Materials and Their Use as Supports and Electrocatalysts in Proton Exchange Membrane Fuel Cells (A Review)


A. S. Pushkarev A. S. Pushkarev , I. V. Pushkareva I. V. Pushkareva , M. V. Kozlova M. V. Kozlova , M. A. Solovyev M. A. Solovyev , S. I. Butrim S. I. Butrim , J. Ge J. Ge , W. Xing W. Xing , V. N. Fateev V. N. Fateev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070114
Abstract / Full Text

Supports of electrocatalytically active nanoparticles affect significantly the activity and stability of electrocatalysts for the hydrogen oxidation and oxygen reduction reactions in membrane-electrode assemblies of proton exchange membrane fuel cells. Currently, carbon blacks are mainly used as supports, which are characterized by a number of disadvantages, including insufficient stability under the fuel cells operating conditions. In this regard, alternative carbon nanomaterials are proposed for the role of the supports, among which graphene and its derivatives can be highlighted. Such materials are characterized by a high specific surface area, stability, electrical conductivity, and provide wide opportunities to control the properties of their surface due to its functionalization. This review summarizes the recent advances in the use of the closest analogues of graphene and its derivatives, functionalized with various elements, both as electrocatalysts and supports for electrocatalytically active nanoparticles for proton exchange membrane fuel cells (including those with the direct alcohol oxidation). The recent advances in the activity and stability of such nanomaterials and their based electrocatalysts under the conditions of characteristic electrochemical reactions (oxygen reduction, alcohol oxidation, etc.), as well as the special features of their application in the composition of membrane-electrode assemblies in the fuel cells are considered.

Author information
  • National Research Centre “Kurchatov Institute,”, Moscow, Russia

    A. S. Pushkarev, I. V. Pushkareva, M. V. Kozlova, M. A. Solovyev, S. I. Butrim & V. N. Fateev

  • National Research University “Moscow Power Engineering Institute”, Moscow, Russia

    A. S. Pushkarev, I. V. Pushkareva, M. V. Kozlova, M. A. Solovyev & S. I. Butrim

  • Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia

    A. S. Pushkarev

  • Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China

    J. Ge & W. Xing

References
  1. Wang, Y., Ruiz Diaz, D.F., Chen, K.S., Wang, Z., and Adroher, X.C., Materials, technological status, and fundamentals of PEM fuel cells—A review, Mater. Today, 2020, vol. 32, p. 178.
  2. Zhang, S., Yuan, X.-Z., Hin, J.N.C., Wang, H., Friedrich, K.A., and Schulze, M., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 2009, vol. 194, p. 588.
  3. Danilov, M.O., Dovbeshko, G.I., Rusetskyi, I.A., Pekhnyo, V.I., Nikolenko, A.S., and Kolbasov, G.Y., Partially unzipped multi-walled carbon nanotubes–promising material for oxygen electrodes of fuel cells, Appl. Phys. A, 2020, vol. 126, p. 764.
  4. Mohideen, M.M., Liu, Y., and Ramakrishna, S., Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation, Appl. Energy, 2020, vol. 257, p. 114027.
  5. Wang, Y., Li, G., Jin, J., and Yang, S., Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts, Int. J. Hydrogen Energy, 2017, vol. 42, p. 5938.
  6. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B Environ., 2009, vol. 88, p. 1.
  7. Antolini, E., Graphene as a new carbon support for low-temperature fuel cell catalysts, Appl. Catal. B Environ., 2012, vol. 123–124, p. 52.
  8. Hossain, S., Abdalla, A.M., Suhaili, S.B.H., Kamal, I., Shaikh, S.P.S., Dawood, M.K., and Azad, A.K., Nanostructured graphene materials utilization in fuel cells and batteries: A review, J. Energy Storage, 2020, vol. 29, p. 101386.
  9. Baskakov, S.A., Baskakova, Y.V., Kalmykova, D.S., Komarov, B.A., Krasnikova, S.S., and Shul’ga, Y.M., Comparison of the Electrode Properties of Graphene Oxides Reduced Chemically, Thermally, or via Microwave Irradiation, Inorg. Mater., 2021, vol. 57, p. 262.
  10. Rabchinskii, M.K., Ryzhkov, S.A., Kirilenko, D.A., Ulin, N.V., Baidakova, M.V., Shnitov, V.V., Pavlov, S.I., Chumakov, R.G., Stolyarova, D.Y., Besedina, N.A., Shvidchenko, A.V., Potorochin, D.V., Roth, F., Smirnov, D.A., Gudkov, M.V., Brzhezinskaya, M., Lebedev, O.I., Melnikov, V.P., and Brunkov, P.N., From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties, Sci. Rep., 2020, vol. 10, p. 6902.
  11. Kulakova, I.I. and Lisichkin, G.V., Chemical Modification of Graphene, Russ. J. Gen. Chem., 2020, vol. 90, p. 1921.
  12. Chandran, P., Ghosh, A., and Ramaprabhu, S., High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell, Sci. Rep., 2018, vol. 8, p. 3591.
  13. Feng, L., Qin, Z., Huang, Y., Peng, K., Wang, F., Yan, Y., and Chen, Y., Boron-, sulfur-, and phosphorus-doped graphene for environmental applications, Sci. Total Environ., 2020, vol. 698, p. 134239.
  14. Pushkarev, A.S., Pushkareva, I.V., Grigoriev, S.A., Kalinichenko, V.N., Presniakov, M.Y., and Fateev, V.N., Electrocatalytic layers modified by reduced graphene oxide for PEM fuel cells, Int. J. Hydrogen Energy, 2015, vol. 40, p. 14492.
  15. Grigor’ev, S.A., Pushkarev, A.S., Kalinichenko, V.N., Pushkareva, I.V., Presnyakov, M.Y., and Fateev, V.N., Electrocatalytic layers based on reduced graphene oxide for fabrication of low-temperature fuel cells, Kinet. Catal., 2015, vol. 56, p. 689.
  16. Baranov, I.E., Nikolaev, I.I., Pushkarev, A.S., Pushkareva, I.V., Kalinnikov, A.A., and Fateev, V.N., Numerical Modeling of Polymer Electrolyte Fuel Cell Catalyst Layer with Different Carbon Supports, Int. J. Electrochem. Sci., 2018, vol. 13, p. 8673.
  17. Sung, C.-C., Liu, C.-Y., and Cheng, C.C.J., Durability improvement at high current density by graphene networks on PEM fuel cell, Int. J. Hydrogen Energy, 2014, vol. 39, p. 11706.
  18. Pushkarev, A.S., Solovyev, M.A., Grigoriev, S.A., Pushkareva, I.V., Voloshin, Y.Z., Chornenka, N.V., Belov, A.S., Millet, P., Kalinichenko, V.N., and Dedov, A.G., Electrocatalytic hydrogen production using the designed hexaphenanthrene iron, cobalt and ruthenium(II) cage complexes as cathode (pre)catalysts immobilized on carbon substrates, Int. J. Hydrogen Energy, 2020, vol. 45. https://doi.org/10.1016/j.ijhydene.2020.02.098
  19. Pushkarev, A.S., Pushkareva, I.V., Solovyev, M.A., Grigoriev, S.A., Voloshin, Y.Z., Chornenka, N.V., Belov, A.S., Millet, P., Antuch, M., Kalinichenko, V.N., and Dedov, A.G., Polyaromatic-terminated iron(ii) clathrochelates as electrocatalysts for efficient hydrogen production in water electrolysis cells with polymer electrolyte membrane, Mendeleev Commun., 2021, vol. 31, p. 20.
  20. Kuriganova, A.B., Leontyev, I.N., Maslova, O.A., and Smirnova, N.V., Electrochemically synthesized Pt-based catalysts with different carbon supports for proton exchange membrane fuel cell applications, Mendeleev Commun., 2018, vol. 28, p. 444.
  21. Su, H. and Hu, Y.H., Recent advances in graphene-based materials for fuel cell applications, Energy Sci. Eng., 2021, vol. 9, p. 958.
  22. Kalinnikov, A.A., Ostrovskii, S.V., Porembskii, V.I., Pushkarev, A.S., and Fateev, V.N., Study of the Electrochemical Oxygen Pump Based on Solid Polymer Electrolyte, Russ. J. Appl. Chem., 2018, vol. 91, p. 927.
  23. Pushkarev, A.S., Pushkareva, I.V., Solovyev, M.A., Butrim, S.I., and Grigoriev, S.A., The Study of the Solid Polymer Electrolyte Oxygen Concentrator with Nanostructural Catalysts Based on Hydrophobized Support, Nanotechnol. Russ., 2020, vol. 15, p. 785.
  24. Pushkareva, I.V., Pushkarev, A.S., Kalinichenko, V.N., Chumakov, R.G., Soloviev, M.A., Liang, Y., Millet, P., and Grigoriev, S.A., Reduced Graphene Oxide-Supported Pt-Based Catalysts for PEM Fuel Cells with Enhanced Activity and Stability, Catalysts, 2021, vol. 11, p. 256.
  25. Campisi, S., Chan-Thaw, C., and Villa, A., Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review, Appl. Sci., 2018, vol. 8, p. 1159.
  26. van Deelen, T.W., Hernández Mejía, C., and de Jong, K.P., Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity, Nat. Catal., 2019, vol. 2, p. 955.
  27. Baranov, I.E., Porembskii, V.I., Lyutikova, E.K., Nikolaev, I.I., Markelov, V.V., Alekseeva, O.K., Ostrovskii, S.V., Kalinnikov, A.A., Akelkina, S.V., Pushkarev, A.S., Solovyev, M.A., Pushkareva, I.V., and Fateev, V.N., Comparative study of Pt-based catalysts supported on various carbon supports for solid polymer electrolyte electrochemical systems, Chem. Probl., 2019, vol. 17, p. 489.
  28. Pak Hoe, L., Boaventura, M., Lagarteira, T., Kee Shyuan, L., and Mendes, A., Polyol synthesis of reduced graphene oxide supported platinum electrocatalysts for fuel cells: Effect of Pt precursor, support oxidation level and pH, Int. J. Hydrogen Energy, 2018, vol. 43, p. 16998.
  29. Şanlı, L.I., Bayram, V., Yarar, B., Ghobadi, S., and Gürsel, S.A., Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: Effect of support type and impregnation–reduction methods, Int. J. Hydrogen Energy, 2016, vol. 41, p. 3414.
  30. Yazici, M.S., Azder, M.A., Salihoglu, O., and Boyaci San, F.G., Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells, Int. J. Hydrogen Energy, 2018, vol. 43, p. 18572.
  31. Gouse Peera, S., Kwon, H.-J., Lee, T.G., and Hussain, A.M., Heteroatom- and metalloid-doped carbon catalysts for oxygen reduction reaction: a mini-review, Ionics (Kiel)., 2020, vol. 26, p. 1563.
  32. Akula, S. and Sahu, A.K., Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells, ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 11438.
  33. Sibul, R., Kibena-Põldsepp, E., Ratso, S., Kook, M., Sougrati, M.T., Käärik, M., Merisalu, M., Aruväli, J., Paiste, P., Treshchalov, A., Leis, J., Kisand, V., Sammelselg, V., Holdcroft, S., Jaouen, F., and Tammeveski, K., Iron- and Nitrogen-Doped Graphene-Based Catalysts for Fuel Cell Applications, ChemElectroChem, 2020, vol. 7, p. 1739.
  34. Zhang, L., Niu, J., Li, M., and Xia, Z., Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells, J. Phys. Chem. C, 2014, vol. 118, p. 3545.
  35. Wang, H., Maiyalagan, T., and Wang, X., Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catal., 2012, vol. 2, p. 781.
  36. Yang, G., Li, L., Lee, W.B., and Ng, M.C., Structure of graphene and its disorders: a review, Sci. Technol. Adv. Mater., 2018, vol. 19, p. 613.
  37. Jorge, A.B., Jervis, R., Periasamy, A.P., Qiao, M., Feng, J., Tran, L.N., and Titirici, M., 3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis, Adv. Energy Mater., 2020, vol. 10, p. 1902494.
  38. Mamtani, K. and Ozkan, U.S., Heteroatom-Doped Carbon Nanostructures as Oxygen Reduction Reaction Catalysts in Acidic Media: An Overview, Catal. Letters, 2015, vol. 145, p. 436.
  39. Jia, Y., Zhang, L., Zhuang, L., Liu, H., Yan, X., Wang, X., Liu, J., Wang, J., Zheng, Y., Xiao, Z., Taran, E., Chen, J., Yang, D., Zhu, Z., Wang, S., Dai, L., and Yao, X., Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping, Nat. Catal., 2019, vol. 2, p. 688.
  40. Florent, M., Wallace, R., and Bandosz, T.J., Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers, ChemCatChem, 2019, vol. 11, p. 851.
  41. Barrera, D., Florent, M., Kulko, M., and Bandosz, T.J., Ultramicropore-influenced mechanism of oxygen electroreduction on metal-free carbon catalysts, J. Mater. Chem. A, 2019, vol. 7, p. 27110.
  42. Duan, J., Chen, S., Jaroniec, M., and Qiao, S.Z., Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes, ACS Catal., 2015, vol. 5, p. 5207.
  43. Kumar, R., Sahoo, S., Joanni, E., Singh, R.K., Maegawa, K., Tan, W.K., Kawamura, G., Kar, K.K., and Matsuda, A., Heteroatom doped graphene engineering for energy storage and conversion, Mater. Today, 2020. https://doi.org/10.1016/j.mattod.2020.04.010
  44. Cui, H., Zhou, Z., and Jia, D., Heteroatom-doped graphene as electrocatalysts for air cathodes, Mater. Horizons, 2017, vol. 4, p. 7.
  45. Feng, X., Bai, Y., Liu, M., Li, Y., Yang, H., Wang, X., and Wu, C., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials, Energy Environ. Sci., 2021, vol. 14, p. 2036.
  46. Higgins, D., Zamani, P., Yu, A., and Chen, Z., The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress, Energy Environ. Sci., 2016, vol. 9, p. 357.
  47. Shao, Y., Jiang, Z., Zhang, Q., and Guan, J., Progress in Nonmetal-Doped Graphene Electrocatalysts for the Oxygen Reduction Reaction, ChemSusChem, 2019, vol. 12, p. 2133.
  48. Alekseeva, O.K., Pushkareva, I.V., Pushkarev, A.S., and Fateev, V.N., Graphene and Graphene-Like Materials for Hydrogen Energy, Nanotechnol. Russ., 2020, vol. 15, p. 273.
  49. Nagar, R., Vinayan, B.P., Samantaray, S.S., and Ramaprabhu, S., Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites, J. Mater. Chem. A, 2017, vol. 5, p. 22897.
  50. Yang, L., Shui, J., Du, L., Shao, Y., Liu, J., Dai, L., and Hu, Z., Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: PAST, Present, and Future, Adv. Mater., 2019, vol. 31, p. 1804799.
  51. Rani, P. and Jindal, V.K., Designing band gap of graphene by B and N dopant atoms, RSC Adv., 2013, vol. 3, p. 802.
  52. Bleu, Y., Bourquard, F., Barnier, V., Lefkir, Y., Reynaud, S., Loir, A.-S., Garrelie, F., and Donnet, C., Boron-doped graphene synthesis by pulsed laser co-deposition of carbon and boron, Appl. Surf. Sci., 2020, vol. 513, p. 145843.
  53. Agnoli, S. and Favaro, M., Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, J. Mater. Chem. A, 2016, vol. 4, p. 5002.
  54. Kang, G.-S., Lee, S., Lee, D.C., Yoon, C.W., and Joh, H.-I., Edge-enriched graphene with boron and nitrogen co-doping for enhanced oxygen reduction reaction, Curr. Appl. Phys., 2020, vol. 20, p. 456.
  55. Hu, M., Yao, Z., Li, L., Tsou, Y.-H., Kuang, L., Xu, X., Zhang, W., and Wang, X., Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H 2-SCR, Nanoscale, 2018, vol. 10, p. 10203.
  56. Cattelan, M., Agnoli, S., Favaro, M., Garoli, D., Romanato, F., Meneghetti, M., Barinov, A., Dudin, P., and Granozzi, G., Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures, Chem. Mater., 2013, vol. 25, p. 1490.
  57. Sun, Y., Du, C., Han, G., Qu, Y., Du, L., Wang, Y., Chen, G., Gao, Y., and Yin, G., Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation, Electrochim. Acta, 2016, vol. 212, p. 313.
  58. Suo, N., Huang, H., Wu, A.M., Cao, G.Z., and Zhang, G.F., A Novel Method of Synthesizing Boron-doped Carbon Catalysts, Fuel Cells, 2018, vol. 18, p. 681.
  59. Wang, L., Sofer, Z., Šimek, P., Tomandl, I., and Pumera, M., Boron-Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping, J. Phys. Chem. C, 2013, vol. 117, p. 23251.
  60. Sahoo, M. and Ramaprabhu, S., Nitrogen and sulfur co-doped porous carbon—is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?, Energy, 2017, vol. 119, p. 1075.
  61. Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B., and Xia, X.-H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 2012, vol. 22, p. 390.
  62. Pullamsetty, A., Subbiah, M., and Sundara, R., Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 2015, vol. 40, p. 10251.
  63. Wang, H., Zhou, Y., Wu, D., Liao, L., Zhao, S., Peng, H., and Liu, Z., Synthesis of Boron-Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition, Small, 2013, vol. 9, p. 1316.
  64. Bleu, Y., Bourquard, F., Tite, T., Loir, A.-S., Maddi, C., Donnet, C., and Garrelie, F., Review of Graphene Growth From a Solid Carbon Source by Pulsed Laser Deposition (PLD), Front. Chem., 2018, vol. 6. https://doi.org/10.3389/fchem.2018.00572
  65. Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., Govindaraj, A., Krishnamurthy, H.R., Waghmare, U.V., and Rao, C.N.R., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene, Adv. Mater., 2009, vol. 21, p. 4726.
  66. Dey, S., Govindaraj, A., Biswas, K., and Rao, C.N.R., Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples, Chem. Phys. Lett., 2014, vol. 595–596, p. 203.
  67. Inagaki, M., Toyoda, M., Soneda, Y., and Morishita, T., Nitrogen-doped carbon materials, Carbon, 2018, vol. 132, p. 104.
  68. Vikkisk, M., Kruusenberg, I., Joost, U., Shulga, E., and Tammeveski, K., Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes, Electrochim. Acta, 2013, vol. 87, p. 709.
  69. Rybin, M., Pereyaslavtsev, A., Vasilieva, T., Myasnikov, V., Sokolov, I., Pavlova, A., Obraztsova, E., Khomich, A., Ralchenko, V., and Obraztsova, E., Efficient nitrogen doping of graphene by plasma treatment, Carbon, 2016, vol. 96, p. 196.
  70. Li, X., Wang, H., Robinson, J.T., Sanchez, H., Diankov, G., and Dai, H., Simultaneous Nitrogen Doping and Reduction of Graphene Oxide, J. Am. Chem. Soc., 2009, vol. 131, p. 15939.
  71. Deng, Y., Xie, Y., Zou, K., and Ji, X., Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors, J. Mater. Chem. A, 2016, vol. 4, p. 1144.
  72. Braghiroli, F.L., Fierro, V., Izquierdo, M.T., Parmentier, J., Pizzi, A., and Celzard, A., Nitrogen-doped carbon materials produced from hydrothermally treated tannin, Carbon, 2012, vol. 50, p. 5411.
  73. Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., and Yoon, S.-H., Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide, Langmuir, 2010, vol. 26, p. 16096.
  74. Tao, G., Zhang, L., Chen, L., Cui, X., Hua, Z., Wang, M., Wang, J., Chen, Y., and Shi, J., N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction, Carbon, 2015, vol. 86, p. 108.
  75. Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., and Gong, J.R., Controllable N-Doping of Graphene, Nano Lett., 2010, vol. 10, p. 4975.
  76. Imran Jafri, R., Rajalakshmi, N., and Ramaprabhu, S., Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem., 2010, vol. 20, p. 7114.
  77. Lin, Y.-P., Ksari, Y., Prakash, J., Giovanelli, L., Valmalette, J.-C., and Themlin, J.-M., Nitrogen-doping processes of graphene by a versatile plasma-based method, Carbon, 2014, vol. 73, p. 216.
  78. Lin, Z., Waller, G., Liu, Y., Liu, M., and Wong, C.-P., Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction, Adv. Energy Mater., 2012, vol. 2, p. 884.
  79. Vikkisk, M., Kruusenberg, I., Joost, U., Shulga, E., Kink, I., and Tammeveski, K., Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media, Appl. Catal. B Environ., 2014, vol. 147, p. 369.
  80. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., and Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties, Nano Lett., 2009, vol. 9, p. 1752.
  81. Liu, Q., Duan, Y., Zhao, Q., Pan, F., Zhang, B., and Zhang, J., Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance, Langmuir, 2014, vol. 30, p. 8238.
  82. Gao, S., Chen, Y., Fan, H., Wei, X., Hu, C., Luo, H., and Qu, L., Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors, J. Mater. Chem. A, 2014, vol. 2, p. 3317.
  83. Jiang, Z., Yu, J., Huang, T., and Sun, M., Recent Advance on Polyaniline or Polypyrrolic-Derived Electrocatalysts for Oxygen Reduction Reaction, Polymers (Basel)., 2018, vol. 10, p. 1397.
  84. Zhou, F., Wang, G., Huang, F., Zhang, Y., and Pan, M., Polyaniline derived N- and O-enriched high surface area hierarchical porous carbons as an efficient metal-free electrocatalyst for oxygen reduction, Electrochim. Acta, 2017, vol. 257, p. 73.
  85. Rabchinskii, M.K., Ryzhkov, S.A., Gudkov, M.V, Baidakova, M.V, Saveliev, S.D., Pavlov, S.I., Shnitov, V.V, Kirilenko, D.A., Stolyarova, D.Y., Lebedev, A.M., Chumakov, R.G., Brzhezinskaya, M., Shiyanova, K.A., Pavlov, S.V., Kislenko, V.A., Kislenko, S.A., Makarova, A., Melnikov, V.P., and Brunkov, P.N., Unveiling a facile approach for large-scale synthesis of N-doped graphene with tuned electrical properties, 2D Mater., 2020, vol. 7, p. 045001.
  86. Rabchinskii, M.K., Saveliev, S.D., Stolyarova, D.Y., Brzhezinskaya, M., Kirilenko, D.A., Baidakova, M.V., Ryzhkov, S.A., Shnitov, V.V., Sysoev, V.V., and Brunkov, P.N., Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination, Carbon, 2021, vol. 182, p. 593.
  87. Pushkarev, A.S., Alekseeva, O.K., Pushkareva, I.V., Shapir, B.L., Chumakov, R.G., Tishkin, V.V., Kozlova, M.V., Kalinichenko, V.N., and Fateev, V.N., Plasma doping of nanostructed reduced graphene oxide, Nanotechnol. Russ., 2020, vol. 15, p. 735.
  88. Wang, Y., Yu, F., Zhu, M., Ma, C., Zhao, D., Wang, C., Zhou, A., Dai, B., Ji, J., and Guo, X., N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction, J. Mater. Chem. A, 2018, vol. 6, p. 2011.
  89. Zhang, C., Mahmood, N., Yin, H., Liu, F., and Hou, Y., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Adv. Mater., 2013, vol. 25, p. 4932.
  90. An, M., Du, C., Du, L., Sun, Y., Wang, Y., Chen, C., Han, G., Yin, G., and Gao, Y., Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles, Chem. Phys. Lett., 2017, vol. 687, p. 1.
  91. Kobayashi, R., Ishii, T., Imashiro, Y., and Ozaki, J., Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid, Beilstein J. Nanotechnol., 2019, vol. 10, p. 1497.
  92. Wen, Y., Wang, B., Huang, C., Wang, L., and Hulicova-Jurcakova, D., Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors, Chem. – A Eur. J., 2015, vol. 21, p. 80.
  93. An, M., Du, L., Du, C., Sun, Y., Wang, Y., Yin, G., and Gao, Y., Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation, Electrochim. Acta, 2018, vol. 285, p. 202.
  94. Shiva Kumar, S., Ramakrishna, S.U.B., Rama Devi, B., and Himabindu, V., Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis, Int. J. Green Energy, 2018, vol. 15, p. 558.
  95. MacIntosh, A.R., Jiang, G., Zamani, P., Song, Z., Riese, A., Harris, K.J., Fu, X., Chen, Z., Sun, X., and Goward, G.R., Phosphorus and Nitrogen Centers in Doped Graphene and Carbon Nanotubes Analyzed through Solid-State NMR, J. Phys. Chem. C, 2018, vol. 122, p. 6593.
  96. Dong, F., Cai, Y., Liu, C., Liu, J., and Qiao, J., Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis, Int. J. Hydrogen Energy, 2018, vol. 43, p. 12661.
  97. Some, S., Kim, J., Lee, K., Kulkarni, A., Yoon, Y., Lee, S., Kim, T., and Lee, H., Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors, Adv. Mater., 2012, vol. 24, p. 5481.
  98. Chu, K., Wang, F., Tian, Y., and Wei, Z., Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects, Electrochim. Acta, 2017, vol. 231, p. 557.
  99. Li, R., Wei, Z., Gou, X., and Xu, W., Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts, RSC Adv., 2013, vol. 3, p. 9978.
  100. Some, S., Shackery, I., Kim, S.J., and Jun, S.C., Phosphorus-Doped Graphene Oxide Layer as a Highly Efficient Flame Retardant, Chem. – A Eur. J., 2015, vol. 21, p. 15480.
  101. Li, Y., Li, S., Wang, Y., Wang, J., Liu, H., Liu, X., Wang, L., Liu, X., Xue, W., and Ma, N., Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 11631.
  102. Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., and Huang, S., Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction, ACS Nano, 2012, vol. 6, p. 205.
  103. Denis, P.A., Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chem. Phys. Lett., 2010, vol. 492, p. 251.
  104. Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., and Chen, P., Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev., 2014, vol. 43, p. 7067.
  105. Akula, S., Peera, S.G., and Sahu, A.K., Uncovering N,S, F Tri-Doped Heteroatoms on Porous Carbon as a Metal-Free Oxygen Reduction Reaction Catalyst for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2019, vol. 166, p. F897.
  106. Li, Y., Yang, J., Huang, J., Zhou, Y., Xu, K., Zhao, N., and Cheng, X., Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction, Carbon, 2017, vol. 122, p. 237.
  107. Xu, C., Hoque, M.A., Chiu, G., Sung, T., and Chen, Z., Stabilization of platinum–nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells, RSC Adv., 2016, vol. 6, p. 112226.
  108. Vinayan, B.P., Diemant, T., Behm, R.J., and Ramaprabhu, S., Iron encapsulated nitrogen and sulfur co-doped few layer graphene as a non-precious ORR catalyst for PEMFC application, RSC Adv., 2015, vol. 5, p. 66494.
  109. Poh, H.L., Šimek, P., Sofer, Z., and Pumera, M., Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H 2 S, SO 2, or CS 2 Gas, ACS Nano, 2013, vol. 7, p. 5262.
  110. Wang, Z., Li, P., Chen, Y., He, J., Zhang, W., Schmidt, O.G., and Li, Y., Pure thiophene–sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties, Nanoscale, 2014, vol. 6, p. 7281.
  111. Yan, Y., Li, H., Liu, Q., Hao, N., Mao, H., and Wang, K., A facile strategy to construct pure thiophene-sulfur-doped graphene/ZnO nanoplates sensitized structure for fabricating a novel “on-off-on” switch photoelectrochemical aptasensor, Sensors Actuators B Chem., 2017, vol. 251, p. 99.
  112. Liu, Y., Ma, Y., Jin, Y., Chen, G., and Zhang, X., Microwave-assisted solvothermal synthesis of sulfur-doped graphene for electrochemical sensing, J. Electroanal. Chem., 2015, vol. 739, p. 172.
  113. Zhai, C., Sun, M., Zhu, M., Song, S., and Jiang, S., A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction, Appl. Surf. Sci., 2017, vol. 407, p. 503.
  114. Klingele, M., Pham, C., Vuyyuru, K.R., Britton, B., Holdcroft, S., Fischer, A., and Thiele, S., Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells, Electrochem. commun., 2017, vol. 77, p. 71.
  115. Van Pham, C., Klingele, M., Britton, B., Vuyyuru, K.R., Unmuessig, T., Holdcroft, S., Fischer, A., and Thiele, S., Tridoped Reduced Graphene Oxide as a Metal-Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells, Adv. Sustain. Syst., 2017, vol. 1, p. 1600038.
  116. Li, M., Liu, C., Zhao, H., An, H., Cao, H., Zhang, Y., and Fan, Z., Tuning sulfur doping in graphene for highly sensitive dopamine biosensors, Carbon, 2015, vol. 86, p. 197.
  117. Liang, C., Wang, Y., and Li, T., Synthesis of sulfur-doped p-type graphene by annealing with hydrogen sulfide, Carbon, 2015, vol. 82, p. 506.
  118. Wang, R., Higgins, D.C., Hoque, M.A., Lee, D., Hassan, F., and Chen, Z., Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance Electrocatalyst, Sci. Rep., 2013, vol. 3, p. 2431.
  119. Zehtab Yazdi, A., Roberts, E.P.L., and Sundararaj, U., Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes, Carbon, 2016, vol. 100, p. 99.
  120. Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J., Rizzi, G. A., Martucci, A., Granozzi, G., and Gennaro, A., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide, Carbon, 2015, vol. 95, p. 949.
  121. Perazzolo, V., Brandiele, R., Durante, C., Zerbetto, M., Causin, V., Rizzi, G.A., Cerri, I., Granozzi, G., and Gennaro, A., Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability, ACS Catal., 2018, vol. 8, p. 1122.
  122. Pham, C.V., Eck, M., and Krueger, M., Thiol functionalized reduced graphene oxide as a base material for novel graphene-nanoparticle hybrid composites, Chem. Eng. J., 2013, vol. 231, p. 146.
  123. Adamska, M. and Narkiewicz, U., Fluorination of Carbon Nanotubes – A Review, J. Fluor. Chem., 2017, vol. 200, p. 179.
  124. Liu, Y., Jiang, L., Wang, H., Wang, H., Jiao, W., Chen, G., Zhang, P., Hui, D., and Jian, X., A brief review for fluorinated carbon: synthesis, properties and applications, Nanotechnol. Rev., 2019, vol. 8, p. 573.
  125. Chausov, D.N., Kurilov, A.D., Kazak, A.V., Smirnova, A.I., Belyaev, V.V., Gevorkyan, E.V., and Usol’tseva, N.V., Conductivity and dielectric properties of cholesteryl tridecylate with nanosized fragments of fluorinated graphene, J. Mol. Liq., 2019, vol. 291, p. 111259.
  126. Zhao, F.-G., Zhao, G., Liu, X.-H., Ge, C.-W., Wang, J.-T., Li, B.-L., Wang, Q.-G., Li, W.-S., and Chen, Q.-Y., Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning, J. Mater. Chem. A, 2014, vol. 2, p. 8782.
  127. Jung, M.-J., Jeong, E., and Lee, Y.-S., The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 2015, vol. 347, p. 250.
  128. Bi, X., Li, Y., Qiu, Z., Liu, C., Zhou, T., Zhuo, S., and Zhou, J., Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries, Materials (Basel)., 2018, vol. 11, p. 1072.
  129. Wang, B., Wang, J., and Zhu, J., Fluorination of Graphene: A Spectroscopic and Microscopic Study, ACS Nano, 2014, vol. 8, p. 1862.
  130. Struzzi, C., Sezen, H., Amati, M., Gregoratti, L., Reckinger, N., Colomer, J.-F., Snyders, R., Bittencourt, C., and Scardamaglia, M., Fluorine and sulfur simultaneously co-doped suspended graphene, Appl. Surf. Sci., 2017, vol. 422, p. 104.
  131. Zhang, H., Fan, L., Dong, H., Zhang, P., Nie, K., Zhong, J., Li, Y., Guo, J., and Sun, X., Spectroscopic Investigation of Plasma-Fluorinated Monolayer Graphene and Application for Gas Sensing, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 8652.
  132. Qiao, X., Liao, S., Wang, G., Zheng, R., Song, H., and Li, X., Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free electrocatalyst for oxygen reduction, Carbon, 2016, vol. 99, p. 272.
  133. Jiang, S., Sun, Y., Dai, H., Hu, J., Ni, P., Wang, Y., Li, Z., and Li, Z., Nitrogen and fluorine dual-doped mesoporous graphene: a high-performance metal-free ORR electrocatalyst with a super-low HO 2 – yield, Nanoscale, 2015, vol. 7, p. 10584.
  134. Peng, W., Li, H., and Song, S., Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 5204.
  135. Sun, C., Feng, Y., Li, Y., Qin, C., Zhang, Q., and Feng, W., Solvothermally exfoliated fluorographene for high-performance lithium primary batteries, Nanoscale, 2014, vol. 6, p. 2634.
  136. An, H., Li, Y., Long, P., Gao, Y., Qin, C., Cao, C., Feng, Y., and Feng, W., Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors, J. Power Sources, 2016, vol. 312, p. 146.
  137. Kakaei, K. and Balavandi, A., Hierarchically porous fluorine-doped graphene nanosheets as efficient metal-free electrocatalyst for oxygen reduction in gas diffusion electrode, J. Colloid Interface Sci., 2017, vol. 490, p. 819.
  138. Mazánek, V., Jankovský, O., Luxa, J., Sedmidubský, D., Janoušek, Z., Šembera, F., Mikulics, M., and Sofer, Z., Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene, Nanoscale, 2015, vol. 7, p. 13646.
  139. Bulusheva, L.G., Fedoseeva, Y.V., Flahaut, E., Rio, J., Ewels, C.P., Koroteev, V.O., Van Lier, G., Vyalikh, D.V., and Okotrub, A.V., Effect of the fluorination technique on the surface-fluorination patterning of double-walled carbon nanotubes, Beilstein J. Nanotechnol., 2017, vol. 8, p. 1688.
  140. Pullamsetty, A. and Sundara, R., Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium, J. Colloid Interface Sci., 2016, vol. 479, p. 260.
  141. Yang, H.N., Lee, D.C., Park, K.W., and Kim, W.J., Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell, Energy, 2015, vol. 89, p. 500.
  142. Yang, H.N. and Kim, W.J., Effect of boron-doping levels in Pt–B-graphene on the electrochemical properties and cell performance of high temperature proton exchange membrane fuel cells, Electrochim. Acta, 2016, vol. 209, p. 430.
  143. Sun, Y., Du, C., An, M., Du, L., Tan, Q., Liu, C., Gao, Y., and Yin, G., Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction, J. Power Sources, 2015, vol. 300, p. 245.
  144. Zhou, X., Qiao, J., Yang, L., and Zhang, J., A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions, Adv. Energy Mater., 2014, vol. 4, p. 1301523.
  145. Karim, N.A., Shamsul, N.S., Alias, M.S., and Kamarudin, S.K., Structural and electronic properties of the adsorption molecules on Co and Fe/N-doped graphene towards the application in direct liquid fuel cell, Struct. Chem., 2021, vol. 32, p. 405.
  146. Puthusseri, D. and Ramaprabhu, S., Oxygen reduction reaction activity of platinum nanoparticles decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions, Int. J. Hydrogen Energy, 2016, vol. 41, p. 13163.
  147. Melke, J., Peter, B., Habereder, A., Ziegler, J., Fasel, C., Nefedov, A., Sezen, H., Wöll, C., Ehrenberg, H., and Roth, C., Metal–Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 82.
  148. Jukk, K., Kongi, N., Rauwel, P., Matisen, L., and Tammeveski, K., Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction, Electrocatalysis, 2016, vol. 7, p. 428.
  149. Chen, Y., Wang, J., Liu, H., Li, R., Sun, X., Ye, S., and Knights, S., Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells, Electrochem. commun., 2009, vol. 11, p. 2071.
  150. Groves, M.N., Chan, A.S.W., Malardier-Jugroot, C., and Jugroot, M., Improving platinum catalyst binding energy to graphene through nitrogen doping, Chem. Phys. Lett., 2009, vol. 481, p. 214.
  151. Ma, J., Habrioux, A., Luo, Y., Ramos-Sanchez, G., Calvillo, L., Granozzi, G., Balbuena, P.B., and Alonso-Vante, N., Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction, J. Mater. Chem. A, 2015, vol. 3, p. 11891.
  152. He, D., Jiang, Y., Lv, H., Pan, M., and Mu, S., Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability, Appl. Catal. B Environ., 2013, vols. 132–133, p. 379.
  153. Chen, Y., Wang, J., Liu, H., Banis, M. N., Li, R., Sun, X., Sham, T.-K., Ye, S., and Knights, S., Nitrogen Doping Effects on Carbon Nanotubes and the Origin of the Enhanced Electrocatalytic Activity of Supported Pt for Proton-Exchange Membrane Fuel Cells, J. Phys. Chem. C, 2011, vol. 115, p. 3769.
  154. Brandiele, R., Durante, C., Zerbetto, M., Vicentini, N., Kosmala, T., Badocco, D., PAST ore, P., Rizzi, G. A., Isse, A. A., and Gennaro, A., Probing the correlation between Pt-support interaction and oxygen reduction reaction activity in mesoporous carbon materials modified with Pt–N active sites, Electrochim. Acta, 2018, vol. 277, p. 287.
  155. Mao, S., Wang, C., and Wang, Y., The chemical nature of N doping on N doped carbon supported noble metal catalysts, J. Catal., 2019, vol. 375, p. 456.
  156. Alegre, C., SebAST ián, D., Gálvez, M., Baquedano, E., Moliner, R., Aricò, A., Baglio, V., and Lázaro, M., N‑Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen, Materials (Basel)., 2017, vol. 10, p. 1092.
  157. Han, F., Liu, Z., Jia, J., Ai, J., Liu, L., Liu, J., and Wang, Q.-D., Influences of N species in N-doped carbon carriers on the catalytic performance of supported Pt, Mater. Chem. Phys., 2019, vol. 237, p. 121881.
  158. Li, Z., Gao, Q., Zhang, H., Tian, W., Tan, Y., Qian, W., and Liu, Z., Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction, Sci. Rep., 2017, vol. 7, p. 43352.
  159. Varga, T., Varga, Á.T., Ballai, G., Haspel, H., Kukovecz, Á., and Kónya, Z., One step synthesis of chlorine-free Pt/Nitrogen-doped graphene composite for oxygen reduction reaction, Carbon, 2018, vol. 133, p. 90.
  160. Zhao, L., Sui, X.-L., Li, J.-L., Zhang, J.-J., Zhang, L.-M., and Wang, Z.-B., Ultra-fine Pt nanoparticles supported on 3D porous N-doped graphene aerogel as a promising electro-catalyst for methanol electrooxidation, Catal. Commun., 2016, vol. 86, p. 46.
  161. Sui, X.-L., Zhang, L.-M., Zhao, L., Gu, D.-M., Huang, G.-S., and Wang, Z.-B., Nitrogen-doped graphene aerogel with an open structure assisted by in-situ hydrothermal restructuring of ZIF-8 as excellent Pt catalyst support for methanol electro-oxidation, Int. J. Hydrogen Energy, 2018, vol. 43, p. 21899.
  162. Karuppanan, K.K., Raghu, A.V., Panthalingal, M.K., Thiruvenkatam, V.P.K., and Pullithadathil, B., 3D-porous electrocatalytic foam based on Pt@N-doped graphene for high performance and durable polymer electrolyte membrane fuel cells, Sustain. Energy Fuels, 2019, vol. 3, p. 996.
  163. Xiong, Y., You, M., Liu, F., Wu, M., Cai, C., Ding, L., Zhou, C., Hu, M., Deng, W., and Wang, S., Pt-Decorated, Nanocarbon-Intercalated, and N-Doped Graphene with Enhanced Activity and Stability for Oxygen Reduction Reaction, ACS Appl. Energy Mater., 2020, vol. 3, p. 2490.
  164. Zhang, Q., Zhang, Y., Cai, W., Yu, X., Ling, Y., and Yang, Z., Nitrogen doped carbon layer coated platinum electrocatalyst supported on carbon nanotubes with enhanced stability, Int. J. Hydrogen Energy, 2017, vol. 42, p. 16773.
  165. Zhang, Q., Yu, X., Ling, Y., Cai, W., and Yang, Z., Ultrathin nitrogen doped carbon layer stabilized Pt electrocatalyst supported on N-doped carbon nanotubes, Int. J. Hydrogen Energy, 2017, vol. 42, p. 10354.
  166. Zhang, Q., Yang, Z., Ling, Y., Yu, X., Zhang, Y., and Cheng, H., Improvement in stability of PtRu electrocatalyst by carbonization of in-situ polymerized polyaniline, Int. J. Hydrogen Energy, 2018, vol. 43, p. 12730.
  167. Lee, H., Sung, Y.-E., Choi, I., Lim, T., and Kwon, O.J., Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell, J. Power Sources, 2017, vol. 362, p. 228.
  168. Mohanraju, K., Lee, H., and Kwon, O.J., High Loading Pt Core/Carbon Shell Derived from Platinum–Aniline Complex for Direct Methanol Fuel Cell Application, Electroanalysis, 2018, vol. 30, p. 1604.
  169. González-Hernández, M., Antolini, E., and Perez, J., CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells, Catalysts, 2020, vol. 10, p. 597.
  170. Zhang, Z., Jiang, C., Li, P., Feng, Q., Zhao, Z. liang, Yao, K., Fan, J., Li, H., and Wang, H., Pt atoms on doped carbon nanosheets with ultrahigh N content as a superior bifunctional catalyst for hydrogen evolution/oxidation, Sustain. Energy Fuels, 2021, vol. 5, p. 532.
  171. Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T., and Nakamura, J., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 2016, vol. 351, p. 361.
  172. Mamtani, K., Jain, D., Dogu, D., Gustin, V., Gunduz, S., Co, A.C., and Ozkan, U.S., Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media, Appl. Catal. B Environ., 2018, vol. 220, p. 88.
  173. Mamtani, K., Singh, D., Dogu, D., Jain, D., Millet, J.-M.M., and Ozkan, U.S., Effect of Acid-Washing on the Nature of Bulk Performance of Nitrogen-Doped Carbon Nanostructures as Oxygen Reduction Reaction Electrocatalysts in Acidic Media, Energy & Fuels, 2018, vol. 32, p. 11038.
  174. Jain, D., Zhang, Q., Hightower, J., Gustin, V., AST hagiri, A., and Ozkan, U.S., Changes in Active Sites on Nitrogen-Doped Carbon Catalysts Under Oxygen Reduction Reaction: A Combined Post-Reaction Characterization and DFT Study, ChemCatChem, 2019, vol. 11, p. 5945.
  175. Shui, J., Wang, M., Du, F., and Dai, L., N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Sci. Adv., 2015, vol. 1, p. e1400129.
  176. Sun, T., Tian, B., Lu, J., and Su, C., Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells, J. Mater. Chem. A, 2017, vol. 5, p. 18933.
  177. He, Y., Liu, S., Priest, C., Shi, Q., and Wu, G., Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement, Chem. Soc. Rev., 2020, vol. 49, p. 3484.
  178. Osmieri, L., Park, J., Cullen, D. A., Zelenay, P., Myers, D.J., and Neyerlin, K.C., Status and challenges for the application of platinum group metal-free catalysts in proton-exchange membrane fuel cells, Curr. Opin. Electrochem., 2021, vol. 25, p. 100627.
  179. Wan, X., Liu, X., Li, Y., Yu, R., Zheng, L., Yan, W., Wang, H., Xu, M., and Shui, J., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells, Nat. Catal., 2019, vol. 2, p. 259.
  180. Fu, X., Zamani, P., Choi, J.-Y., Hassan, F. M., Jiang, G., Higgins, D.C., Zhang, Y., Hoque, M. A., and Chen, Z., In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells, Adv. Mater., 2017, vol. 29, p. 1604456.
  181. Yang, X., Wang, Y., Zhang, G., Du, L., Yang, L., Markiewicz, M., Choi, J., Chenitz, R., and Sun, S., SiO2–Fe/N/C catalyst with enhanced mass transport in PEM fuel cells, Appl. Catal. B Environ., 2020, vol. 264, p. 118523.
  182. Sudarsono, W., Wong, W.Y., Loh, K.S., Majlan, E.H., Syarif, N., Kok, K.-Y., Yunus, R.M., Lim, K.L., and Hamada, I., Sengon wood-derived RGO supported Fe-based electrocatalyst with stabilized graphitic N-bond for oxygen reduction reaction in acidic medium, Int. J. Hydrogen Energy, 2020, vol. 45, p. 23237.
  183. Kim, J., Kim, C., Jeon, I.-Y., Baek, J.-B., Ju, Y.-W., and Kim, G., A New Strategy for Outstanding Performance and Durability in Acidic Fuel Cells: A Small Amount Pt Anchored on Fe, N co-Doped Graphene Nanoplatelets, ChemElectroChem, 2018, vol. 5, p. 2857.
  184. Vecchio, C.Lo, Serov, A., Dicome, M., Zulevi, B., Aricò, A.S., and Baglio, V., Investigating the durability of a direct methanol fuel cell equipped with commercial Platinum Group Metal-free cathodic electro-catalysts, Electrochim. Acta, 2021, p. 139108.
  185. Yang, N., Zheng, X., Li, L., Li, J., and Wei, Z., Influence of Phosphorus Configuration on Electronic Structure and Oxygen Reduction Reactions of Phosphorus-Doped Graphene, J. Phys. Chem. C, 2017, vol. 121, p. 19321.
  186. Kumar, N.A. and Baek, J.-B., Carbon-Based Metal-Free Catalysts. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018, p. 529.
  187. Liu, Y.-X., Zhang, W.-Y., Han, G.-K., Zhou, Y.-W., Li, L.-F., Kong, F.-P., Gao, Y.-Z., Du, C.-Y., Wang, J.-J., Du, L., Cai, W.-B., and Yin, G.-P., Deactivated Pt Electrocatalysts for the Oxygen Reduction Reaction: The Regeneration Mechanism and a Regenerative Protocol, ACS Catal., 2021, vol. 11, p. 9293.
  188. Higgins, D., Hoque, M.A., Seo, M.H., Wang, R., Hassan, F., Choi, J.-Y., Pritzker, M., Yu, A., Zhang, J., and Chen, Z., Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction, Adv. Funct. Mater., 2014, vol. 24, p. 4325.
  189. Hoque, M.A., Hassan, F.M., Higgins, D., Choi, J.-Y., Pritzker, M., Knights, S., Ye, S., and Chen, Z., Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfur-Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst, Adv. Mater., 2015, vol. 27, p. 1229.
  190. Hoque, M.A., Hassan, F. M., Seo, M.-H., Choi, J.-Y., Pritzker, M., Knights, S., Ye, S., and Chen, Z., Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction, Nano Energy, 2016, vol. 19, p. 27.
  191. Lu, Z., Li, S., Liu, C., He, C., Yang, X., Ma, D., Xu, G., and Yang, Z., Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: a DFT-D study, RSC Adv., 2017, vol. 7, p. 20398.
  192. Nansé, G., Papirer, E., Fioux, P., Moguet, F., and Tressaud, A., Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds, Carbon, 1997, vol. 35, p. 175.
  193. Asset, T., Chattot, R., Maillard, F., Dubau, L., Ahmad, Y., Batisse, N., Dubois, M., Guérin, K., Labbé, F., Metkemeijer, R., Berthon-Fabry, S., and Chatenet, M., Activity and Durability of Platinum-Based Electrocatalysts Supported on Bare or Fluorinated Nanostructured Carbon Substrates, J. Electrochem. Soc., 2018, vol. 165, p. F3346.
  194. Berthon-Fabry, S., Dubau, L., Ahmad, Y., Guerin, K., and Chatenet, M., First Insight into Fluorinated Pt/Carbon Aerogels as More Corrosion-Resistant Electrocatalysts for Proton Exchange Membrane Fuel Cell Cathodes, Electrocatalysis, 2015, vol. 6, p. 521.
  195. Grigoriev, S., Fateev, V., Pushkarev, A., Pushkareva, I., Ivanova, N., Kalinichenko, V.Yu., Presnyakov, M., and Wei, X., Reduced Graphene Oxide and Its Modifications as Catalyst Supports and Catalyst Layer Modifiers for PEMFC, Materials (Basel)., 2018, vol. 11, p. 1405.
  196. Bott-Neto, J.L., Asset, T., Maillard, F., Dubau, L., Ahmad, Y., Guérin, K., Berthon-Fabry, S., Mosdale, A., Mosdale, R., Ticianelli, E.A., and Chatenet, M., Utilization of graphitized and fluorinated carbon as platinum nanoparticles supports for application in proton exchange membrane fuel cell cathodes, J. Power Sources, 2018, vol. 404, p. 28.
  197. Zhu, J., He, G., Tian, Z., Liang, L., and Shen, P.K., Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction, Electrochim. Acta, 2016, vol. 194, p. 276.
  198. Li, M., Jiang, Q., Yan, M., Wei, Y., Zong, J., Zhang, J., Wu, Y., and Huang, H., Three-Dimensional Boron- and Nitrogen-Codoped Graphene Aerogel-Supported Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation Reaction, ACS Sustain. Chem. Eng., 2018, vol. 6, p. 6644.
  199. Zhou, Q., Wu, J., Pan, Z., Kong, X., Cui, Z., Wu, D., and Hu, G., Pt supported on boron, nitrogen co-doped carbon nanotubes (BNC NTs) for effective methanol electrooxidation, Int. J. Hydrogen Energy, 2020, vol. 45, p. 33634.
  200. Ishii, T., Maie, T., Kimura, N., Kobori, Y., Imashiro, Y., and Ozaki, J., Enhanced catalytic activity of nanoshell carbon co-doped with boron and nitrogen in the oxygen reduction reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 15489.
  201. Kanninen, P., Luong, N.D., Sinh, L.H., Flórez-Montaño, J., Jiang, H., Pastor, E., Seppälä, J., and Kallio, T., Highly active platinum nanoparticles supported by nitrogen/sulfur functionalized graphene composite for ethanol electro-oxidation, Electrochim. Acta, 2017, vol. 242, p. 315.
  202. Chao, G., Zhang, L., Wang, D., Chen, S., Guo, H., Xu, K., Fan, W., and Liu, T., Activation of graphitic nitrogen sites for boosting oxygen reduction, Carbon, 2020, vol. 159, p. 611.
  203. Yang, C., Jin, H., Cui, C., Li, J., Wang, J., Amine, K., Lu, J., and Wang, S., Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction, Nano Energy, 2018, vol. 54, p. 192.
  204. Kwak, D.-H., Han, S.-B., Lee, Y.-W., Park, H.-S., Choi, I.-A., Ma, K.-B., Kim, M.-C., Kim, S.-J., Kim, D.-H., Sohn, J.-I., and Park, K.-W., Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium, Appl. Catal. B Environ., 2017, vol. 203, p. 889.
  205. Zehtab Yazdi, A., Fei, H., Ye, R., Wang, G., Tour, J., and Sundararaj, U., Boron/Nitrogen Co-Doped Helically Unzipped Multiwalled Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 7786.
  206. Li, D., Jia, Y., Chang, G., Chen, J., Liu, H., Wang, J., Hu, Y., Xia, Y., Yang, D., and Yao, X., A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte, Chem, 2018, vol. 4, p. 2345.
  207. Chen, Z., Higgins, D., Yu, A., Zhang, L., and Zhang, J., A review on non-precious metal electrocatalysts for PEM fuel cells, Energy Environ. Sci., 2011, vol. 4, p. 3167.
  208. Kramm, U. I., Herranz, J., Larouche, N., Arruda, T.M., Lefèvre, M., Jaouen, F., Bogdanoff, P., Fiechter, S., Abs-Wurmbach, I., Mukerjee, S., and Dodelet, J.-P., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 11673.
  209. Shen, H., Gracia-Espino, E., Ma, J., Zang, K., Luo, J., Wang, L., Gao, S., Mamat, X., Hu, G., Wagberg, T., and Guo, S., Synergistic Effects between Atomically Dispersed Fe–N–C and C–S–C for the Oxygen Reduction Reaction in Acidic Media, Angew. Chemie Int. Ed., 2017, vol. 56, p. 13800.
  210. Bhange, S.N., Unni, S.M., and Kurungot, S., Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe–N–C Active Center for Oxygen Reduction Reaction in Acidic and Basic pH Conditions, ACS Appl. Energy Mater., 2018, vol. 1, p. 368.
  211. Bhange, S.N., Soni, R., Singla, G., Ajithkumar, T.G., and Kurungot, S., FeNx/FeSx – Anchored Carbon Sheet–Carbon Nanotube Composite Electrocatalysts for Oxygen Reduction, ACS Appl. Nano Mater., 2020, vol. 3, p. 2234.
  212. Qiao, M. and Titirici, M., Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction, Chem. – A Eur. J., 2018, vol. 24, p. 18374.
  213. An, M., Du, C., Du, L., Wang, Y., Wang, Y., Sun, Y., Yin, G., and Gao, Y., Enhanced Methanol Oxidation in Acid Media on Pt/S, P Co-doped Graphene with 3D Porous Network Structure Engineering, ChemElectroChem, 2019, vol. 6, p. 1157.
  214. Peera, S.G., Sahu, A.K., Arunchander, A., Bhat, S.D., Karthikeyan, J., and Murugan, P., Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells, Carbon, 2015, vol. 93, p. 130.
  215. Akula, S. and Sahu, A.K., Heteroatoms co-Doping (N, F) to the Porous Carbon Derived from Spent Coffee Grounds as an Effective Catalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2019, vol. 166, p. F93.
  216. Peera, S.G., Arunchander, A., and Sahu, A.K., Platinum nanoparticles supported on nitrogen and fluorine co-doped graphite nanofibers as an excellent and durable oxygen reduction catalyst for polymer electrolyte fuel cells, Carbon, 2016, vol. 107, p. 667.
  217. Wang, H., Ding, J., Zhang, J., Wang, C., Yang, W., Ren, H., and Kong, A., Fluorine and nitrogen co-doped ordered mesoporous carbon as a metal-free electrocatalyst for oxygen reduction reaction, RSC Adv., 2016, vol. 6, p. 79928.
  218. Rong, H., Zhan, T., Sun, Y., Wen, Y., Liu, X., and Teng, H., ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range, Electrochim. Acta, 2019, vol. 318, p. 783.
  219. Zan, Y., Zhang, Z., Dou, M., and Wang, F., Enhancement mechanism of sulfur dopants on the catalytic activity of N and P co-doped three-dimensional hierarchically porous carbon as a metal-free oxygen reduction electrocatalyst, Catal. Sci. Technol., 2019, vol. 9, p. 5906.
  220. Hack, J., Heenan, T.M.M., Iacoviello, F., Mansor, N., Meyer, Q., Shearing, P., Brandon, N., and Brett, D.J.L., A Structure and Durability Comparison of Membrane Electrode Assembly Fabrication Methods: Self-Assembled Versus Hot-Pressed, J. Electrochem. Soc., 2018, vol. 165, p. F3045.
  221. Vierrath, S., Breitwieser, M., Klingele, M., Britton, B., Holdcroft, S., Zengerle, R., and Thiele, S., The reasons for the high power density of fuel cells fabricated with directly deposited membranes, J. Power Sources, 2016, vol. 326, p. 170.
  222. Wang, L., Sofer, Z., and Pumera, M., Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?, ACS Nano, 2020, vol. 14, p. 21.