Статья
2020

LaMnOx Air Diffusion Cathode for Primary Alkali Batteries


M. S. Yazici M. S. Yazici
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520080078
Abstract / Full Text

Electrochemical performance of a new type of high-current air cathode is compared to off-the-shelf air electrodes (Alupower-A series; Eltech-B; Duracell-C) in 35% KOH solution. LaMnOx (LAM) is made by precipitation method resulting with sub-micron size particles. The electrode is single layer and very resistant to the KOH leakage. Approximately 65 m2 g–1 surface area is favorable for effective catalyst distribution and electrochemical active area utilization. LaMnOx type catalyst-supported electrode performs comparable or better than many of the commercial samples. Electrode shows a voltage drop of less than 200 mV at 150 mA cm–2 current density. Electrode structure does not show any sign of mass transfer limitation up to 250 mA cm–2.

Author information
  • TUBITAK Marmara Research Center, Energy Institute, 41470, Gebze, Turkey

    M. S. Yazici

References
  1. Vincent, C.A. and Scrosati, B., Modern Batteries, Arnold, 1997.
  2. Materials for Electrochemical Energy Storage and Conversion: Batteries, Capacitors and Fuel Cells, Doughty, D.H., Vyas, B., Takamura, T., and Huff, J.R., Eds., Mater. Res. Soc., 1995.
  3. Brandon, N.N.P. and Brett, D.D.J., Engineering porous materials for fuel cell applications, Math. Phys. Eng. Sci., 2006, vol. 364, p. 147.
  4. Fuel Cell Handbook, 7th ed., US Department of Energy, 2004.
  5. Pletcher, D. and Walsh, F.C., Industrial Electrochemistry, Chapman and Hall, 1993.
  6. Tomantschger, K. and Kordesch, K.V., Structural analysis of alkaline fuel cell electrodes and electrode materials, J. Power Sources, 1989, vol. 25, p. 195.
  7. Kiros, Y., Quatrano, T., and Bjornbom, P., Determination of the thicknesses of the active layer and cathode limiting currents in AFC, Electrochem. Commun., 2004, vol. 6, p. 526.
  8. Hyodo, T., Miura, N., and Yamazoe, N., Gas diffusion-type oxygen electrode using perovskite-type oxides for metal-air batteries, MRS Proc., 1995, vol. 393, p. 79.
  9. Anastasijevic, N.A., Dimitrijevic, Z.M., and Adzic, R.R., Oxygen reduction on a ruthenium electrode in alkaline electrolytes, J. Electroanal. Chem., 1986, vol. 199, p. 351.
  10. Bianchi, G., Mazza, F., and Mussini, T., Catalytic decomposition of acid hydrogen peroxide solutions on platinum, iridium, palladium and gold surfaces, Electrochim. Acta, 1962, vol. 7, p. 457.
  11. Martinovic, J.M., Sepa, D.B., Vojnovic, M.V., et al., Kinetics of electrochemical reduction of oxygen at rhodium, Electrochim. Acta, 1988, vol. 33, p. 1267.
  12. Sugawara, M., Ohno, M., and Matsuki, K., Novel preparation method of manganese(II) manganese(IV) oxide (Mn2Mn3O8, Mn5O8) by citrate process, Chem. Lett., 1991, vol. 20, no. 8, p. 1465.
  13. Lee, C.K., Striebel, K.A., McLarnon, F.R., and Cairns, E.J., Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes, J. Electrochem. Soc., 1997, vol. 144, p. 3801.
  14. Kiros, Y. and Schwartz, S., Pyrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells, J. Power Sources, 1991, vol. 36, p. 547.
  15. Yang, J. and Xu, J.J., Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions, Electrochem. Commun., 2003, vol. 5, p. 306.
  16. Weidenkaff, A., Ebbinghaus, S.G., Lippert, T., et al., Phase formation and phase transition of Ln1 –xCaxCoO3 – δ (Ln = La, Er) applied for bifunctional air electrodes, Cryst. Eng., 2002, vol. 5, p. 449.
  17. Hayashi, M., Uemura, H., Shimanoe, K., et al., Enhanced electrocatalytic activity for oxygen reduction over carbon-supported LaMnO3 prepared by reverse micelle method, Electrochem. Solid State Lett., 1998, vol. 1, no. 6, p. 268.
  18. Hayashi, M., Uemura, H., and Shimanoe, K., Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode, J. Electrochem. Soc., 2004, vol. 151, p. A158.
  19. Munnik, P., de Jongh, P.E., and de Jong, K.P., Recent developments in the synthesis of supported catalysts, Chem. Rev., 2015, vol. 115, p. 6687.
  20. Védrine, J.C., Heterogeneous catalysis on metal oxides, Catalysts, 2017, vol. 7, p. 341.