
Simultaneous Determination of Fat-Soluble Vitamins by Using Modified Glassy Carbon Electrode


Российский электрохимический журнал
https://doi.org/10.1134/S1023193521080048
This study demonstrates the development of an electrochemical sensor based on β-cyclodextrin/multi-wall carbon nanotubes modified glassy carbon electrode for detecting fat-soluble vitamins (vitamin A, vitamin D3, vitamin E and vitamin K1) in an aqueous media of micellar solutions using voltammetric studies. The linear calibration curves were 8–100, 0.8–60, 0.5–60 and 0.1–20 µM for vitamin A, vitamin D3, vitamin E and vitamin K1, respectively. The optimal conditions for quantitative determination were obtained in a Britton–Robinson buffer at pH 5.0. Moreover, it is found that β-cyclodextrin/multi-wall carbon nanotubes displays high reproducibility and selectivity for the determination of fat-soluble vitamins. The proposed voltammetric method permits the rapid and simple simultaneous electrochemical determination of fat-soluble vitamins. In this study, we used a sample pre-treatment methods, liquid-liquid extraction with hexane. At the end of the study, the proposed approach was applied to the electrochemical simultaneous determination of the mixed pharmaceutical sample and milk sample.
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320, Istanbul, Avcılar, TurkeyA. A. Avan & H. Filik
- Waldenstedt, L., Nutritional factors of importance for optimal leg health in broilers: a review, Anim. Feed. Sci. Technol., 2006, vol. 126, nos. 3–4, p. 291. https://doi.org/10.1016/J.ANIFEEDSCI.2005.08.008
- Combs, G.F., The Vitamins, 4th ed., London: Acad. Press, 2012. https://doi.org/10.1016/c2009-0-63016-6
- Nelson, D.L. and Cox, M.M., Lehninger Principles of Biochemistry, 6th ed., New York: W.H. Freeman and Co., 2013. https://doi.org/10.1007/978-3-662-08289-8
- Shi, H., Ma, Y., Humphrey, J.H., and Craft, N.E., Determination of vitamin A in dried human blood spots by high-performance capillary electrophoresis with laser-excited fluorescence detection, J. Chromatogr. B: Biomed. Appl., 1995, vol. 665, no. 1, p. 89.
- Delgado-Zamarreño, M., González-Maza, I., Sánchez-Pérez, A., and Carabias-Martinez, R., Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography, J. Chromatogr. A, 2002, vol. 953, nos. 1–2, p. 257. https://doi.org/10.1016/S0021-9673(02)00130-9
- Zhang, Y., Zhou, W.-E., Yan, J.-Q., Liu, M., Zhou, Y., Shen, X., Ma, Y.-L., Feng, X.-S., Yang, J., and Li, G.-H., A review of the extraction and determination methods of thirteen essential vitamins to the human body: an update from 2010, Molecules, 2018, vol. 23, no. 6, p. 1484. https://doi.org/10.3390/molecules23061484
- Karaźniewicz-Łada, M. and Główka, A., A review of chromatographic methods for the determination of water- and fat-soluble vitamins in biological fluids, J. Sep. Sci., 2016, vol. 39, no. 1, p. 132. https://doi.org/10.1002/jssc.201501038
- Ravisankar, P., Reddy, A.A., Nagalakshmi, B., Koushik, O.S., Vijaya Kumar, B., and Anvith, P.S., The comprehensive review on fat soluble vitamins, IOSR J. Pharm., 2015, vol. 5, no. 11, p. 12.
- Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V., and Martín, J., Flow-injection fluorimetric determination of vitamin K1 based on a photochemical reaction, Talanta, 1999, vol. 50, no. 1, p. 49. https://doi.org/10.1016/S0039-9140(99)00104-6
- Amin, A.S., Colorimetric determination of tocopheryl acetate (vitamin E) in pure form and in multi-vitamin capsules, Eur. J. Pharm. Biopharm., 2001, vol. 51, no. 3, p. 267. https://doi.org/10.1016/S0939-6411(00)00148-X
- Tütem, E., Apak, R., Günaydı, E., and Sözgen, K., Spectrophotometric determination of vitamin E (α-tocopherol) using copper(II)-neocuproine reagent, Talanta, 1997, vol. 44, no. 2, p. 249. https://doi.org/10.1016/S0039-9140(96)02041-3
- Song, W.O., Beecher, G.R., and Eitenmiller, R.R., Modern Analytical Methodologies in Fat- and Water- Soluble Vitamins, New York: John Wiley & Sons, 2000.
- Momenbeik, F. and Bagheri, N., Optimization of fat-soluble vitamins separations by reversed-phase liquid chromatography with the use of aliphatic alcohols as mobile phase additives, J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, no. 14, p. 1355. https://doi.org/10.1080/10826076.2015.1048873
- Gomis, D., Fernández, M., and Gutiérrez Alvarez, M., Simultaneous determination of fat-soluble vitamins and provitamins in milk by microcolumn liquid chromatography, J. Chromatogr. A, 2000, vol. 891, no. 1, p. 109. https://doi.org/10.1016/S0021-9673(00)00623-3
- Moreno, P. and Salvadó, V., Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 870, nos. 1–2, p. 207. https://doi.org/10.1016/S0021-9673(99)01021-3
- Iwase, H., Determination of vitamin D2 in emulsified nutritional supplements by solid-phase extraction and column-switching high-performance liquid chromatography with UV detection, J. Chromatogr. A, 2000, vol. 881, no. 1-2, p. 189. https://doi.org/10.1016/S0021-9673(00)00198-9
- Gimeno, E., Castellote, A., Lamuela-Raventós, R., de la Torre, M., and López-Sabater, M., Rapid determination of vitamin E in vegetable oils by reversed-phase high-performance liquid chromatography, J. Chromatogr. A, 2000, vol. 881, nos. 1–2, p. 251. https://doi.org/10.1016/S0021-9673(00)00219-3
- Escrivá, A., Esteve, M., Farré, R., and Frígola, A., Determination of liposoluble vitamins in cooked meals, milk and milk products by liquid chromatography, J. Chromatogr. A, 2002, vol. 947, no. 2, p. 313. https://doi.org/10.1016/S0021-9673(01)01618-1
- Casal, S., Macedo, B., and Oliveira, M.B.P., Simultaneous determination of retinol, β-carotene and α-tocopherol in adipose tissue by high-performance liquid chromatography, J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 763, no. 1-2, p. 1. https://doi.org/10.1016/S0378-4347(01)00349-8
- Rodrigo, N., Alegría, A., Barberá, R., and Farré, R., High-performance liquid chromatographic determination of tocopherols in infant formulas, J. Chromatogr. A, 2002, vol. 947, no. 1, p. 97. https://doi.org/10.1016/S0021-9673(01)01596-5
- Barek, J., Pecková, K., and Vyskočil, V., Where modern electroanalytical methods verge fifty years after nobel prize for polarography, Chem. List., 2009, vol. 103, no. 11, p. 889.
- Sýs, M., Švecová, B., Švancara, I., and Metelka, R., Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with a glassy carbon paste electrode, Food Chem., 2017, vol. 229, p. 621. https://doi.org/10.1016/J.FOODCHEM.2017.02.068
- Mikheeva, E.V. and Anisimova, L.S., Voltammetric determination of vitamin E (α-Tocopherol acetate) in multicomponent vitaminized mixtures, J. Anal. Chem., 2007, vol. 62, no. 4, p. 373. https://doi.org/10.1134/S1061934807040144
- Michalkiewicz, S., Pryciak, M., Malyszko, J., and Oszczudlowski, J., Voltammetric determination of α‑tocopheryl acetate in pharmaceutical dosage forms, Electroanalysis, 2004, vol. 16, no. 11, p. 961. https://doi.org/10.1002/elan.200302893
- Ly, S.Y., Voltammetric analysis of DL-α-tocopherol with a paste electrode, J. Sci. Food Agric., 2008, vol. 88, no. 7, p. 1272. https://doi.org/10.1002/jsfa.3218
- Atuma, S.S., Lindquist, J., and Lundström, K., The electrochemical determination of vitamin A. Part I. Voltammetric determination of vitamin A in pharmaceutical preparations. Analyst, 1974, vol. 99, no. 1183, p. 683. https://doi.org/10.1039/an9749900683
- Li, S.-G., Xue, W.-T., and Zhang, H., Voltammetric behavior and determination of tocopherol in vegetable oils at a polypyrrole modified electrode, Electroanalysis, 2006, vol. 18, no. 23, p. 2337. https://doi.org/10.1002/elan.200603663
- Ziyatdinova, G., Giniyatova, E., and Budnikov, H., Cyclic voltammetry of retinol in surfactant media and its application for the analysis of real samples, Electroanalysis, 2010, vol. 22, no. 22, p. 2708. https://doi.org/10.1002/elan.201000358
- Cincotto, F.H., Canevari, T.C., and Machado, S.A.S., Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol, Electroanalysis, 2014, vol. 26, no. 12, p. 2783. https://doi.org/10.1002/elan.201400451
- Žabčíková, S., Mikysek, T., Červenka, L., and Sýs, M., Electrochemical study and determination of all-trans-retinol at carbon paste electrode modified by a surfactant, Food Technol. Biotechnol., 2018, vol. 56, no. 3, p. 337. https://doi.org/10.17113/ftb.56.03.18.5618
- Jaiswal, P.V., Ijeri, V.S., and Srivastava, A.K., Voltammetric behavior of α-tocopherol and its determination using surfactant+ethanol+water and surfactant+acetonitrile+water mixed solvent systems, Anal. Chim. Acta, 2001, vol. 441, no. 2, p. 201. https://doi.org/10.1016/S0003-2670(01)01119-9
- Filik, H., Avan, A.A., Aydar, S., and Çakar, Ş., Determination of tocopherol using reduced graphene oxide-nafion hybrid-modified electrode in pharmaceutical capsules and vegetable oil samples, Food Anal. Methods, 2016, vol. 9, no. 6, p. 1745. https://doi.org/10.1007/s12161-015-0353-x
- Filik, H. and Avan, A.A., Simultaneous electrochemical determination of vitamin K1 and vitamin D3 by using poly (alizarin red S)/multi-walled carbon nanotubes modified glassy electrode, Curr. Anal. Chem., 2017, vol. 13, no. 5, p. 350. https://doi.org/10.2174/1573411013666170105143113
- Filik, H., Avan, A.A., and Aydar, S., Simultaneous electrochemical determination of α-tocopherol and retinol in micellar media by a poly(2,2′-(1,4 phenylenedivinylene)-bis-8-hydroxyquinaldine)-multiwalled carbon nanotube modified electrode, Anal. Lett., 2016, vol. 49, no. 8, p. 1240. https://doi.org/10.1080/00032719.2015.1094665
- Robledo, S.N., Zachetti, V.G.L., Zon, M.A., and Fernández, H., Quantitative determination of tocopherols in edible vegetable oils using electrochemical ultra-microsensors combined with chemometric tools, Talanta, 2013, vol. 116, p. 964. https://doi.org/10.1016/J.TALANTA.2013.08.008
- Ziyatdinova, G., Morozov, M., and Budnikov, H., MWNT-modified electrodes for voltammetric determination of lipophilic vitamins, J. Solid State Electrochem., 2012, vol. 16, p. 2441. https://doi.org/10.1007/s10008-011-1581-7
- Men, K., Chen, Y., Liu, J., and Wei, D., Electrochemical detection of vitamin D2 and D3 based on a Au-Pd modified glassy carbon electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9555. https://doi.org/10.20964/2017.10.15
- Sýs, M., Jashari, G., Švecová, B., Arbneshi, T., and Metelka, R., Determination of vitamin K1 using square wave adsorptive stripping voltammetry at solid glassy carbon electrode, J. Electroanal. Chem., 2018, vol. 821, p. 10. https://doi.org/10.1016/J.JELECHEM.2018.02.020
- Thangphatthanarungruang, J., Ngamaroonchote, A., Laocharoensuk, R., Chotsuwan, C., and Siangproh, W., A novel electrochemical sensor for the simultaneous determination of fat-soluble vitamins using a screen-printed graphene/nafion electrode, Key Eng. Mater., 2018, vol. 777, p. 597. https://doi.org/10.4028/www.scientific.net/KEM.777.597
- Sýs, M., Žabcíková, S., Cervenka, L., and Vytras, K., Adsorptive stripping voltammetry in lipophilic vitamins determination, Potravinarstvo, 2016, vol. 10, no. 1, p. 260. https://doi.org/10.5219/587
- Lovander, M.D., Lyon, J.D., Parr, D.L., Wang, J., Parke, B., and Leddy, J., Critical review—electrochemical properties of 13 vitamins: a critical review and assessment, J. Electrochem. Soc., 2018, vol. 165, no. 2, p. G18. https://doi.org/10.1149/2.1471714jes
- Tan, Y.S., Urbančok, D., and Webster, R.D., Contrasting voltammetric behavior of different forms of vitamin A in aprotic organic solvents, J. Phys. Chem. B, 2014, vol. 118, no. 29, p. 8591. https://doi.org/10.1021/jp505456q
- Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci., 2010 vol. 35, no. 7, p. 837. https://doi.org/10.1016/J.PROGPOLYMSCI.2010.03.002
- Rahemi, V., Garrido, J.M.P.J, Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Electrochemical determination of the herbicide bentazone using a carbon nanotube β‑cyclodextrin modified electrode, Electroanalysis, 2013, vol. 25, no. 10, p. 2360. https://doi.org/10.1002/elan.201300230
- Rahemi, V., Vandamme, J.J., Garrido, J.M.P.J., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor, Talanta, 2012, vol. 99, p. 288. https://doi.org/10.1016/J.TALANTA.2012.05.053
- Shen, Q. and Wang, X., Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode, J. Electroanal. Chem., 2009, vol. 632, nos. 1–2, p. 149. https://doi.org/10.1016/J.JELECHEM.2009.04.009
- Garrido, J.M.P.J., Rahemi, V., Borges, F., Brett, C.M.A., and Garrido, E.M.P.J., Carbon nanotube β-cyclodextrin modified electrode as enhanced sensing platform for the determination of fungicide pyrimethanil, Food Control, 2016, vol. 60, p. 7. https://doi.org/10.1016/J.FOODCONT.2015.07.001
- Ramanathan, T., Fisher, F.T., Ruoff, R.S., and Brinson, L.C., Amino-functionalized carbon nanotubes for binding to polymers and biological systems., Chem. Mater., 2005, vol. 17, no. 6, p. 1290. https://doi.org/10.1021/cm048357f
- Katsa, M., Proestos, C., and Komaitis, E., Determination of fat soluble vitamins A and E in infant formulas by HPLC-DAD, Curr. Res. Nutr. Food Sci. J., 2016, vol. 4, p. 92. https://doi.org/10.12944/CRNFSJ.4.Special-Issue-October.12
- Wang, X., Song, X.-J., Xuan, H., and Yang, F., Preparation of β-cyclodextrin-modified multi-walled CNTs and its application in capturing β-naphthol from wastewater, Micro Nano Lett., 2012, vol. 7, no. 9, p. 892. https://doi.org/10.1049/mnl.2012.0426
- Liu, K., Fu, H., Xie, Y., Zhang, L., Pan, K., and Zhou, W., Assembly of β-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C, 2008, vol. 112, no. 4, p. 951. https://doi.org/10.1021/JP0756754
- Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., and Wolf, B., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures, Biosens. Bioelectron., 1997, vol. 12, no. 1, p. 29. https://doi.org/10.1016/0956-5663(96)89087-7
- Zhao, L., Li, P., and Yalkowsky, S.H., Solubilization of fluasterone, J. Pharm. Sci., 1999, vol. 88, no. 10, p. 967. https://doi.org/10.1021/JS9901413
- Alkhamis, K.A., Allaboun, H., and Al-Momani, W.Y., Study of the solubilization of gliclazide by aqueous micellar solutions, J. Pharm. Sci., 2003, vol. 92, no. 4, p. 839. https://doi.org/10.1002/JPS.10350
- Li, P. and Zhao, L., Solubilization of flurbiprofen in pH-surfactant solutions, J. Pharm. Sci., 2003, vol. 92, no. 5, p. 951. https://doi.org/10.1002/JPS.10360
- Sugihara, G., Nagadome, S., Oh, S.-W., and Ko, J.-S., A review of recent studies on aqueous binary mixed surfactant systems, J. Oleo. Sci., 2008, vol. 57, no. 2, p. 61. https://doi.org/10.5650/jos.57
- Shi, Z., Chen, J., and Yin, X., Effect of anionic-nonionic-mixed surfactant micelles on solubilization of PAHs, J. Air Waste Manage. Assoc., 2013, vol. 63, no. 6, p. 694. https://doi.org/10.1080/10962247.2013.778918