Статья
2017

Studies on Co-oxidation resistances of electrolytes based on sulfolane and lithium bis(oxalato)borate


Zhi-Fang Zhou Zhi-Fang Zhou , Xiao-Ling Cui Xiao-Ling Cui , Hong-Ming Zhang Hong-Ming Zhang , Cong-Cong Yang Cong-Cong Yang , Fan-Jie Xu Fan-Jie Xu
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517040139
Abstract / Full Text

How to exert the high-voltage performance of LiNi0.5Mn1.5O4 and break through the bottleneck effect of corresponding electrolyte have become key points in advanced lithium-ion battery. Lithium bis(oxalato) borate (LiBOB) and sulfolane (SL) are chosen as additives to investigate their effects on the electrochemical performance of lithium-ion battery with LiNi0.5Mn1.5O4 cathode. The quantum chemistry calculation theory shows that oxidation potential of SL–BOB is dramatically increased, consistent with the experimental result in CV measurement. Meanwhile, results of CV and charge–discharge cycling indicate that LiBOB and SL would be involved in the initial oxidation reaction to form an effective solid electrolyte interface film on surfaces of the cathode electrode thus enhance the cycling performance of LiNi0.5Mn1.5O4/Li cells. Electrochemical impedance spectroscopy data proves that SL is beneficial to resistance decrease. All these data will become important corroborations that the combined electrolyte LiBOB and SL have good oxidation resistances.

Author information
  • College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China

    Zhi-Fang Zhou, Xiao-Ling Cui, Hong-Ming Zhang, Cong-Cong Yang & Fan-Jie Xu

References
  1. Choi, N.S., Chen, Z., Freunberger, S.A., et al., Angew. Chem. Int. Edit., 2012, vol. 51, p. 9994.
  2. Kim, J.H., Myung, S.T., Yoon, C.S., et al., Chem. Mater., 2004, vol. 16, p. 906.
  3. Liu, J. and Manthiram, A., Chem. Mater., 2009, vol. 21, p. 1695.
  4. Xu, K., Chem. Rev., 2004, vol. 104, p. 4303.
  5. Yang, L., Ravdel, B., and Lucht, B., Electrochem. Solid-State Lett., 2010, vol. 13, p. A95.
  6. Xu, K. and Cresce, A.V., J. Mater. Chem., 2011, vol. 21, p. 9849.
  7. Caballero, A., Cruz, M., Hernán, L., et al., J. Electrochem. Soc., 2005, vol. 152, p. A552.
  8. Jo, M., Lee, Y.K., Kim, K.M., et al., J. Electrochem. Soc., 2010, vol. 157, p. A841.
  9. Huang, X.K., Zhang, Q.S., Gan, J.L., et al., J. Electrochem. Soc., 2011, vol. 158, p. A139.
  10. Whittingham, M.S., Chem. Rev., 2004, vol. 104, p. 4271.
  11. Li, J.G., Zhang, Y.Y., Li, J.J., et al., Ionics, 2011, vol. 17, p. 671.
  12. Xu, K., Zhang, S.S., and Jow, T.R., J. Power Sources, 2005, vol. 143, p. 197.
  13. Xu, K., J. Electrochem. Soc., 2008, vol. 155, p. A733.
  14. Fadhel, A. and Peter, S.F., J. Power Sources, 2010, vol. 195, p. 7627.
  15. Dalavi, S., Xu, M., Knight, B., et al., Electrochem. Solid-State, 2012, vol. 15, p. A28.
  16. Aravindan, V., Cheah, Y.L., Ling, W.C., et al., J. Electrochem. Soc., 2012, vol. 159, p. A1435.
  17. Watanabe, Y., Kinoshita, S.I., Wada, S., et al., J. Power Sources, 2008, vol. 179, p. 770.
  18. Cui, X.L., Zhang, H.M., Li, S.Y., et al., J. Power Sources, 2013, vol. 240, p. 476.
  19. Li, S.Y., Zhao, Y.Y., Shi, X.M., et al., Electrochim. Acta, 2012, vol. 65, p. 221.
  20. Jian, G., Li, J.J., Jiang, C.Y., et al., J. Electrochem. Soc., 2012, vol. 157, p. A899.
  21. Frisch, M.J., Truck, G.W., Schlegel, H.B., et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT,2009.
  22. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
  23. Lee, C.T., Yang, W.T., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.
  24. Borodin, O., Behl, W., and Jow, T.R., J. Phys. Chem. C, 2013, vol. 117, p. 8661.
  25. Wang, R.L., Buhrmester, C., and Dahn, J.R., J. Electrochem. Soc., 2006, vol. 153, p. A445.
  26. Li, T.T., Xing, L.D., Li, W.S., et al., J. Power Sources, 2013, vol. 244, p. 668.
  27. Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117.
  28. Xu, K. and Angell, C.A., J. Electrochem. Soc., 2002, vol. 149, p. L7.
  29. Wang, Y.T., Xing, L.D., Li, W.S., et al., J. Phys. Chem. Lett., 2013, vol. 4, p. 3992.
  30. Kaymaksiz, S., Wilhelm, F., Wachtler, M., et al., J. Power Sources, 2013, vol. 239, p. 659.
  31. Li, S.Y., Zhao, W., Cui, X.L., et al., Electrochim. Acta, 2013, vol. 91, p. 282.
  32. Aurbach, D., Markovsky, B., Talyossef, Y., et al., J. Power Sources, 2006, vol. 162, p. 780.
  33. Li, S.Y., Zhao, Y.Y., Shi, X.M., et al., Electrochim. Acta, 2012, vol. 65, p. 221.