Examples



mdbootstrap.com



 
Статья
2020

Enhancement of Oxidation of Formic Acid through Application of Zirconia Matrix for Immobilization of Noble Metal Catalytic Nanoparticles


I. A. RutkowskaI. A. Rutkowska, P. KrakowkaP. Krakowka, M. JarzebskaM. Jarzebska, K. CzarnieckiK. Czarniecki, M. KrechM. Krech, K. SobkowiczK. Sobkowicz, K. ZdunekK. Zdunek, Z. GalusZ. Galus, P. J. KuleszaP. J. Kulesza
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520100110
Abstract / Full Text

Electrocatalytic activity of common noble metal (platinum, bimetallic platinum-ruthenium and palladium) nanoparticles (both unsupported and supported on Vulcan carriers) toward electrooxidation of formic acid in acid medium (0.5 mol dm–3 H2SO4) can be significantly enhanced by dispersing them over thin film of zirconia (ZrO2). The enhancement effects concern increases of the electrocatalytic current densities (normalized against the mass of noble metal catalysts) recorded under both cyclic voltammetric and chronoamperometric conditions. The observations can be rationalized in terms of the ability of zirconia nanostructures to provide active hydroxyl groups capable of inducing the removal of the inhibiting COOH or CO type adsorbates from their surfaces. The role of Vulcan carriers is in improving electronic conductivity, in addition to facilitating distribution of catalytic metal sites at the electrocatalytic interface. Regarding dissimilar mechanisms for HCOOH oxidations at Pt, PtRu and Pd nanoparticles, the activating capabilities of zirconia differ depending on the potential applied thus reflecting distinct nature of electronic or chemical interactions. Specific interactions between the zirconia support and noble metal nanoparticles are also possible, particularly in the case of Pd-based catalysts where the enhancement effects are the most pronounced. Finally, it should be emphasized that, historically, representatives of Russian school of electrochemistry, including V.S. Bagotsky, were one of the first world-wide who investigated the formic acid oxidation and emphasized the importance of metal—support interactions during electrooxidation of small organic molecules at noble metal nanoparticles.

Author information
  • Faculty of Chemistry, University of Warsaw, PL-02-093, Warsaw, PolandI. A. Rutkowska, P. Krakowka, M. Jarzebska, K. Czarniecki, M. Krech, K. Sobkowicz, K. Zdunek, Z. Galus & P. J. Kulesza
References
  1. Rice, C., Ha, S., Masel, R.I., Waszczuk, P., Wieckowski, A., and Barnard, T., Direct formic acid fuel cells, J. Power Sources, 2002, vol. 111, p. 83.
  2. Zhang, Z.H., Huang, Y.J., Ge, J.J., Liu, C.P., Lu, T.H., and Xing, W., WO3/C hybrid material as a highly active catalyst support for formic acid electrooxidation, Electrochem. Commun., 2008, vol. 10, p. 1113.
  3. Rice, C., Ha, S., Masel, R.I., and Wieckowski, A., Catalysts for direct formic acid fuel cells, J. Power Sources, 2003, vol. 115, p. 229.
  4. Demirci, U.B., Direct liquid-feed fuel cells: Thermodynamic and environmental concerns, J. Power Sources, 2007, vol. 169, p. 239.
  5. Yu, X. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.
  6. Capon, A. and Parsons, R., The oxidation of formic acid at noble metal electrodes. Part III. Intermediates and mechanism on platinum electrodes, J. Electroanal. Chem., Interfacial Electrochem., 1973, vol. 45, p. 205.
  7. Podlovchenko, B.I., Petry, O.A., Frumkin, A.N., and Hira Lal, The bahaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid, J. Electroanal. Chem., 1966, vol. 11, p. 12.
  8. Jiang, J. and Kucernak, A., Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid, J. Electroanal. Chem., 2002, vol. 520, p. 64.
  9. Park, S., Xie, Y., and Weaver, M.J., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.
  10. Lovic, J.D., Tripkovic, A.V., Gojkovic, S.Lj., Popovic, K.Dj., Tripkovic, D.V., Olszewski, P., and Ko-wal, A., Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst, J. Electroanal. Chem., 2005, vol. 581, p. 294.
  11. Gasteiger, H.A., Markovic, N.M., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem., 1993, vol. 97, p. 12020.
  12. Chu, D. and Gilman, S., Methanol electro-oxidation on unsupported Pt–Ru alloys at different temperatures, J. Electrochem. Soc., 1996, vol. 143, p. 1685.
  13. Frelink, T., Visscher, W., and Ween, J.A.R.V., Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: implications for methanol and CO electrooxidation, Langmuir, vol. 12, p. 3702.
  14. Hable, C.T. and Wrighton, M.S., Electrocatalytic oxidation of methanol and ethanol: a comparison of platinum-tin and platinum–ruthenium catalyst particles in a conducting polyaniline matrix, Langmuir, 1993, vol. 9, p. 3284.
  15. Iwasita, T. and Vielstich, W., On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions, J. Electroanal. Chem., Interfacial Electrochem., 1986, vol. 201, p. 403.
  16. Beden, B., Hahn, F., Juanto, S., Lamy, C., and Leger, J.-M., Infrared spectroscopic study of the methanol adsorbates at a platinum electrode: part I. Influence of the bulk concentration of methanol upon the nature of the adsorbates, J. Electroanal. Chem., Interfacial Electrochem., 1987, vol. 225, p. 215.
  17. Capon, A. and Parsons, R., The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes, J. Electroanal. Chem., Interfacial Electrochem., 1973, vol. 44, p. 239
  18. Polyak, A.G., Vasil’ev, Yu.B., Bagotskii, V.S., and Smirnova, R.M., Electrochemical oxidation of formic acid on palladium. Communication I, Sov. Electrochem., 1967, vol. 3, p. 958.
  19. Zhou, Y., Liu, J., Ye, J., Zou, Z., Ye, J., Gu, J., Yu, T., and Yang, A., Poisoning and regeneration of Pd catalyst in direct formic acid fuel cell, Electrochim. Acta, 2010, vol. 55, pp. 5024–5027.
  20. Grozovski, V., Solla-Gullón, J., Climent, V.C., Herrero, E., and Feliu, J.M., Formic acid oxidation on shape-controlled Pt nanoparticles studied by pulsed voltammetry, J. Phys. Chem. C, 2010, vol. 114, p. 13802.
  21. Larsen, R., Zakzeski, J., and Masel, R.I., Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation, Electrochem. Solid-State Lett., 2005, vol. 8, p. A291.
  22. Brandt, K., Steinhausen, M., and Wandelt, K., Catalytic and electro-catalytic oxidation of formic acid on the pure and Cu-modified Pd(1 1 1)-surface, J. Electroanal. Chem., 2008, vol. 616, p. 27.
  23. Zhang, Z.H., Ge, J.J., Ma, L.A., Liao, J.H., Lu, T.H., and Xing, W., Highly active carbon-supported PdSn catalysts for formic acid electrooxidation, Fuel Cells, 2009, vol. 9, p. 114.
  24. Suo, Y. and Hsing, I.M., Synthesis of bimetallic PdAu nanoparticles for formic acid oxidation, Electrochim. Acta, 2011, vol. 56, p. 2174.
  25. Bai, Z., Yang, L., Guo, Y., Zheng, Z., Hu, C., and Xu, P., High-efficiency palladium catalysts supported on ppy-modified C60 for formic acid oxidation, Chem. Commun., 2011, vol. 47, p. 1752.
  26. Huang, Y.J., Zhou, X.C., Liao, J.H., Liu, C.P., Lu, T.H., and Xing, W., Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method, Electrochem. Commun., 2008, vol. 10, p. 621.
  27. Jena, B.K., Sahu, S.C., Satpati, B., Sahu, R.K., Behera, D., and Mohanty, S., A facile approach for morphosynthesis of Pd nanoelectrocatalysts, Chem. Commun., 2011, vol. 47, p. 3796.
  28. Li, H.Q., Sun, G.Q., Jiang, Q., Zhu, M.Y., Sun, S.G., and Xin, Q., Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process, J. Power Sources, 2007, vol. 172, p. 641.
  29. Zhang, S., Shao, Y., Yin, G., and Lin, Y., Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation, J. Power Sources, 2010, vol. 195, p. 1103.
  30. Cheng, N., Webster, R.A., Pan, M., Mu, S., Rassaei, L., Tsang, S.C., and Marken, F., One-step growth of 3–5 nm diameter palladium electrocatalyst in a carbon nanoparticle-chitosan host and characterization for formic acid oxidation, Electrochim. Acta, 2010, vol. 55, p. 6601.
  31. Lu, G., Crown, A., and Wieckowski, A., Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes, J. Phys. Chem. B, 1999, vol. 103, p. 9700.
  32. Wang, X., Wang, J., Zou, Q., and Xia, Y., Pd nanoparticles supported on carbon-modified rutile TiO2 as a highly efficient catalyst for formic acid electrooxidation, Electrochim. Acta, 2011, vol. 56, p. 1646.
  33. Feng, L., Cui, Z., Yan, L., Xing, W., and Liu, C., The enhancement effect of MoOx on Pd/C catalyst for the electrooxidation of formic acid, Electrochim. Acta, 2011, vol. 56, p. 2051.
  34. Yi, Q., Huang, W., Liu, X., Xu, G., Zhou, Z., and Chen, A., Electroactivity of titanium-supported nanoporous Pd–Pt catalysts towards formic acid oxidation, J. Electroanal. Chem., 2008, vols. 619–620, p. 197.
  35. Feng, L., Yang, J., Hu, Y., Zhu, J., Liu, C., and Xing, W., Electrocatalytic properties of PdCeOx/C anodic catalyst for formic acid electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, p. 4812.
  36. Matos, J., Borodzinski, A., Mikolajczuk-Zychora, A., Kedzierzawski, P., Mierzwa, B., Juchniewicz, K., Mazurkiewicz, M., and Hernadez-Garrido, J.C., Direct formic acid fuel cells on Pd catalysts supported on hybrid TiO2–C materials, App. Catal. B, 2015, vol. 163, p. 167.
  37. Qu, W.-L., Wang, Z.-B., Sui, X.-L., Gu, D.-M., and Yin, G.-P., ZrC–C and ZrO2–C as novel supports of Pd catalysts for formic acid electrooxidation, Fuel Cells, 2013, vol. 13, p. 149.
  38. Rutkowska, I.A., Marks, D., Perruchot, C., Jouini, M., and Kulesza, P.J., Admixing palladium nanoparticles with tungsten oxide nanorods toward more efficient electrocatalytic oxidation of formic acid, Colloids Surf. A: Physicochem. Eng. Aspects, 2013, vol. 439, p. 200.
  39. Rutkowska, I.A., Enhancement of oxidation of formic acid in acid medium on zirconia-supported phosphotungstate-decorated noble metal (Pd, Pt) nanoparticles, Aust. J. Chem., 2016, vol. 69, p. 394.
  40. Osawa, M., Komatsu, K.-I., Samjeské, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutiérrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem. Int. Ed., 2011, vol. 50, p. 1159.
  41. Jeon, H., Uhm, S., Jeong, B., and Lee, J., On the origin of reactive Pd catalysts for an electrooxidation of formic acid, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 6192.
  42. Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?, Langmuir, 2006, vol. 22, p. 10399.
  43. Chenitz, R. and Dodelet, J.-P., A simple approach to improve the electrocatalytic properties of commercial Pt/C, J. Electrochem. Soc., 2010, vol. 157, p. B1658.
  44. Du, C., Chen, M., Wang, W., Yin, G., and Shi, P., Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid, Electrochem. Commun., 2010, vol. 12, p. 843.
  45. Antolini, E. and Gonzalez, E.R., Ceramic materials as supports for low-temperature fuel cell catalysts, Solid State Ionics, 2009, vol. 180, p. 746.
  46. Shao, Y.Y, Liu, J., Wang, Y., and Lin, Y.H., Novel catalyst support materials for PEM fuel cells: current status and future prospects, J. Mater. Chem., 2009, vol. 19, p. 46.
  47. Lai, L., Huang, G., Wang, X., and Weng, J., Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity, Carbon, 2011, vol. 49, p. 1581.
  48. Chen, Y., Zhou, Y., Tang, Y., and Lu, T., Electrocatalytic properties of carbon-supported PtRu catalyst with the high alloying degree for formic acid electrooxidation, electrocatalytic properties of carbon-supported Pt–Ru catalysts with the high alloying degree for formic acid electrooxidation, J. Powers Sources, 2010, vol. 195, p. 4129.
  49. Mazurkiewicz-Pawlica, M., Malolepszy, A., Mikolajczuk-Zychora, A., Mierzwa, B., Borodzinski, A., and Stobinski, L., A simple method for enhancing the catalytic activity of Pd deposition on carbon nanotubes used in direct formic acid fuel cells, Appl. Surf. Sci., 2019, vol. 476, p. 806.
  50. Mikolajczuk-Zychora, A., Borodzinski, A., Kedzierzawski, P., Mierzwa, B., Mazurkiewicz-Pawlicka, M., Stobinski, L., Ciecierska, E., Zimoch, A., and Opallo, M., High active carbon supported Pd cathode catalysts for direct formic acid fuel cells, App. Surf. Sci., 2016, vol. 388, p. 645.
  51. Antolini, E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B Environ., 2009, vol. 88, p. 1.
  52. Liu, Z. and Hong, L., Electrochemical characterization of the electrooxidation of methanol, ethanol and formic acid on Pt/C and PtRu/C electrodes, J. Appl. Electrochem., 2007, vol. 37, p. 505.
  53. Rutkowska, I.A. and Kulesza, P.J., Metal oxide cluster and polyoxometallate supports for noble metal nanoparticles in efficient electrocatalysis, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Wandelt, K., Ed., Elsevier, 2018, vol. 5, p. 207.
  54. Trasatti, S., in Interfacial Electrochemistry Theory, Experiment and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999, p. 769.
  55. Trasatti, S., Oxide/aqueous solution interfaces, interplay of surface chemistry and electrocatalysis, Mat. Chem. Phys., 1987, vol. 16, p. 157.
  56. Trasatti, S., Electrolysis by oxides-attempt at unifying approach, J. Electroanal. Chem., Interfacial Electrochem., 1980, vol. 111, p. 125.
  57. Kulesza, P.J., Pieta, I.S., Rutkowska, I.A., Wadas, A., Marks, D., Klak, K., Stobinski, L., and Cox, J.A., Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides, Electrochim. Acta, 2013, vol. 110, p. 474.
  58. Jayaraman, S., Jaramillo, T.F., Baeck, S.-H., and McFarland, E.W., Synthesis and characterization of Pt‒WO3 as methanol oxidation catalysts for fuel cells, J. Phys. Chem. B, 2005, vol. 109, p. 22958.
  59. Barczuk, P.J., Tsuchiya, H., Macak, J.M., Schmuki, P., Szymanska, D., Makowski, O., Miecznikowski, K., and Kulesza, P.J., Enhancement of the electrocatalytic oxidation of methanol at Pt/Ru nanoparticles immobilized in different WO3 matrices, Electrochem. Solid-State Lett., 2006, vol. 9, E13.
  60. Micoud, F., Maillard, F., Bonnefont, A., Job, N., and Chatenet, M., The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 1182.
  61. Salmaoui, S., Sediri, F., Gharbi, N., Perruchot, C., Aeiyach, S., Rutkowska, I.A., Kulesza, P.J., and Jouini, M., Hexagonal nanorods of tungsten trioxide: synthesis, structure, electrochemical properties and activity as supporting material in electrocatalysis, Appl. Surf. Sci., 2011, vol. 257, p. 8223.
  62. Rutkowska, I.A., Koster, M.D., Blanchard, G.J., and Kulesza, P.J., Nanoporous platinum electrodes as substrates for metal oxide-supported noble metal electrocatalytic nanoparticles: synergistic effects during electrooxidation of ethanol, Aust. J. Chem., 2014, vol. 67, p. 1414.
  63. Hasa, B., Kalamaras, E., Papaioannou, E.I., Sygellou, L., and Katsaounis, A., Electrochemical oxidation of alcohols on Pt–TiO2 binary electrodes, Int. J. Hydrogen Energy, 2013, vol. 38, p. 15395.
  64. Rutkowska, I.A. and Kulesza, P.J., Electroanalysis of ethanol oxidation and reactivity of platinum-ruthenium catalysts supported onto nanostructured titanium dioxide matrices, J. Electrochem. Soc., 2016, vol. 163, p. H3052.
  65. Hepel, M., Kumarihamy, I., and Zhong, C.J., Nanoporous TiO2-supported bimetallic catalysts for methanol oxidation in acidic media, Electrochem. Commun., 2006, vol. 8, p. 1439.
  66. Zoladek, S., Rutkowska, I.A., and Kulesza, P.J., Enhancement of activity of platinum towards oxidation of ethanol by supporting on titanium dioxide containing phosphomolybdate-modified gold nanoparticles, Appl. Surf. Sci., 2011, vol. 257, p. 8205.
  67. Bai, Y., Wu, J., Xi, J., Wang, J., Zhu, W., Chen, L., and Qiu, X., Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst, Electrochem. Commun., 2005, vol. 7, pp. 1087–1090.
  68. Deshmane, V.G. and Adewuyi, Y.G., Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): effects of different process parameters, Micropor. Mesopor. Mater., 2012, vol. 148, p. 88.
  69. Song, H., Qiu, X., and Li, F., Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media, Appl. Catal. A, 2009, vol. 364, p. 1.
  70. Rutkowska, I.A., Koster, M.D., Blanchard, G.J., and Kulesza, P.J., Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia–rhodium supports, J. Power Sources, 2014, vol. 272, p. 681.
  71. Rutkowska, I.A. and Kulesza, P.J., Electrocatalytic oxidation of ethanol in acid medium: enhancement of activity of vulcan-supported platinum-based nanoparticles upon immobilization within nanostructured zirconia matrices, Funct. Mater. Lett., 2014, vol. 7, p. 1440005.
  72. Rutkowska, I.A., Zoladek, S., and Kulesza, P.J., Polyoxometallate-assisted integration of nanostructures of Au and ZrO2 to form supports for electrocatalytic PtRu nanoparticles: enhancement of their activity toward oxidation of ethanol, Electrochim. Acta, 2015, vol. 162, p. 215.
  73. Xu, C. and Shen, P.K., Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media, Chem. Commun., 2004, no. 19, p. 2238.
  74. Ou, D.R., Mori, T., Fugane, K., Togasaki, H., Ye, F., and Drennan, J., Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation, J. Phys. Chem. C, 2011, vol. 115, p. 19239.
  75. Yuana, W., Zhang, J., Shen, P.K., Lia, C.M., and Jiang, S.P., Self-assembled CeO2 on carbon nanotubes supported Au nanoclusters as superior electrocatalysts for glycerol oxidation reaction of fuel cells, Electrochim. Acta, 2016, vol. 190, p. 817.
  76. Maiyalagan, T. and Khan, F.N., Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts, Catal. Commun., 2009, vol. 10, p. 433.
  77. Rutkowska, I.A., Wadas, A., and Kulesza, P.J., Enhancement of oxidative electrocatalytic properties of platinum nanoparticles by supporting onto mixed WO3/ZrO2 matrix, Appl. Surf. Sci., 2016, vol. 388, p. 616.
  78. Rutkowska, I.A., Wadas, A., and Kulesza, P.J., Mixed layered WO3/ZrO2 films (with and without rhodium) as active supports for PtRu nanoparticles: enhancement of oxidation of ethanol, Electrochim. Acta, 2016, vol. 210, p. 575.
  79. Amberg, M. and Günter, J.R., Metastable cubic and tetragonal zirconium dioxide, prepared by thermal oxidation of the dichalcogenides, Solid State Ionics, 1996, vol. 84, p. 313.
  80. Lee, S.M., Oh, S.H., Cho, W.I., and Jang, H., The effect of zirconium oxide coating on the lithium nickel cobalt oxide for lithium secondary batteries, Electrochim. Acta, 2006, vol. 52, p. 1507.
  81. Lu, J., Zang, J.B., Shan, S.X., Huang, H., and Wang, Y.H., Synthesis and characterization of core–shell structural MWNT-zirconia nanocomposites, Nano Lett., 2008, vol. 8, p. 4070.
  82. Yadav, G.D. and Nair, J.J., Sulfated zirconia and its modified versions as promising catalysts for industrial processes, Micropor. Mesopor. Mater., 1999, vol. 33, p. 1.
  83. Johnson, G.E., Mitric, R., Tyo, E.C., Bonacic-Koutecky, V., and Castleman, A.W., Jr., Stoichiometric zirconium oxide cations as potential building blocks for cluster assembled catalysts, J. Am. Chem. Soc., 2008, vol. 130, p. 13912.
  84. Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 4th ed., New York: Wiley, 1980, p. 827.
  85. Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, Pure Appl. Chem., 1991, vol. 63, p. 711.
  86. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.
  87. Green, C.L. and Kucernak, A., Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts, J. Phys Chem. B, 2002, vol. 106, p. 1036.
  88. Rand, A.J. and Woods, R.J., The nature of adsorbed oxygen on rhodium, palladium and gold electrodes, J. Electroanal. Chem., 1971, vol. 31, p. 29.
  89. Breiter, M.W., Dissolution and adsorption of hydrogen at smooth Pd wires at potentials of the alpha phase in sulfuric acid solution, J. Electroanal. Chem., 1977, vol. 81, p. 275.
  90. Hao, Y., Li, J., Yang, X., Wang, X., and Lu, L., Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization, Mater. Sci. Eng. A, 2004, vol. 367, p. 243.
  91. Chen, S., Yin, Y., Wang, D., Liu, Y., and Wang, X., Structures, growth modes and spectroscopic properties of small zirconia clusters, J. Cryst. Growth, 2005, vol. 282, p. 498.
  92. Jayakumar, S., Ananthapadmanabhan, P.V., Perumal, K., Thiyagarajan, T.K., Mishra, S.C., Su, L.T., Tok, A.I.Y., and Guo, J., Characterization of nano-crystalline ZrO2 synthesized via reactive plasma processing, Mat. Sci. Eng. B, 2011, vol. 176, p. 894.
  93. Phillippe, C.M. and Mazdiyasni, K.S., Infrared and Raman spectra of zirconia polymorphs, J. Am. Ceram. Soc., 1971, vol. 54, p. 254.
  94. Feinberg, A. and Perry, C.H., Structural disorder and phase transitions in ZrO2–Y2O3 system, J. Phys. Chem. Solids, 1981, vol. 42, p. 513.
  95. Elmouwahidi, A., Bail on-Garcia, E., Perez-Cadenas, A.F., Maldonado-Hodar, F.J., Castelo-Quiben, J., and Carrasco-Marin, F., Electrochemical performances of supercapacitors from carbon–ZrO2 composites, Electrochim. Acta, 2018, vol. 259, p. 803.
  96. Cui, Z., Kulesza, P.J., Li, C.M., Xing, W., and Jiang, S.P., Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells, Int. J. Hydrogen Energy, 2011, vol. 36, p. 8508.
  97. Wang, D., Lu, S., Kulesza, P.J., Li, C.M., De Marco, R., and Jiang, S.P., Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes, Phys.Chem. Chem. Phys., 2011, vol. 13, p. 4400.
  98. Minakshisundaram, N., Vasil’ev, Yu.B., and Bagot-skii, V.S., Adsorption of formic acid on a platinum electrode. The nature of the adsorbed particles, Sov. Electrochem., 1967, vol. 3, p. 161.
  99. Minakshisundaram, N., Vasil’ev, Yu.B., and Bagot-skii, V.S., Kinetics of formic acid adsorption on a platinum electrode, Sov. Electrochem., 1967, vol. 3, p. 245.
  100. Polyak, A.G., Vasil’ev, Yu.B., and Bagotskii, V.S., Kinetics of formic acid anodic oxidation at palladium electrode, Sov. Electrochem., 1968, vol. 4, p. 474.
  101. Skundin, A.M. and Tsirlina, G.A., V.S Bagotsky’s contribution to modern electrochemistry, J. Solid State Electrochem., 2014, vol. 18, p. 1147.
  102. Napolskii, K.S., Barczuk, P.J., Vassiliev, S.Yu., Veresov, A.G., Tsirlina, G.A., and Kulesza, P.J., Templating of electrodeposited platinum group metals as a tool to control catalytic activity, Electrochim. Acta, 2007, vol. 52, p. 7910.
  103. Bagotskii, V.S., Skundin, A.M., and Yakushev, V.V., Photoemission from platinum microdeposits on titanium, Dokl. Akad. Nauk SSSR, 1982, vol. 265, p. 628.
  104. Yakushev, V.V., Skundin, A.M., and Bagotskii, V.S., Electron photoemission from platinum and palladium microdeposits on glassy carbon into the solution, Sov. Electrochem., 1984, vol. 20, pp. 246–248.
  105. Bagotzky, V.S. and Skundin, A.M., Electrocatalysts on supports-IV. Investigation of electron interaction of microdeposits with the support by the method of electron photoemission into solution, Electrochim. Acta, 1985, vol. 30, p. 899.
  106. Malolepszy, M., Mazurkiewicz, M., Stobinski, L., Lesiak, B., Kover, L., Toyh, J., Mierzwa, B., Borodzinski, A., Nitze, F., and Wagberg, T., Deactivation resistent Pd–ZrO2 supported on muliwall carbon nanotubes catalyst for direct formic acid fuel cells, Int. J. Hydrogen. Energy, 2015, vol. 40, p. 16724.
  107. Gavrilov, A.N., Savinova, E.R., Simonov, P.A., Zaikovskii, V.I., Cherepanova, S.V., Tsirlina, G.A., and Parmon, V.N., On the influence of the metal loading on the structure of carbon-supported PtRu catalysts and their electrocatalytic activities in CO and methanol electrooxidation, Phys. Chem. Chem. Phys., 2007, vol. 9, p. 5476.
  108. Petrii, O.A., The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review), Russ. J. Electrochem., 2019, vol. 55, p. 1.
  109. Yang, L., Wang, X.,Liu, D., Cui, G., Dou, B., and Wang, J., Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable for electro-oxidation of formic acid, App. Catal. B-Environ., 2020, vol. 263, p. 118304.
  110. Jiang, Z. and Jiang, Z.-J., Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by H2 plasma treatment in methanol and formic acid, Electrochim. Acta, 2011, vol. 56, p. 8662.
  111. Liu, Z., Hong, L., Tham, M.P., Lim, T.H., and Jiang, H., Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells, J. Power Sources, 2006, vol. 161, p. 831.
  112. Kuznetsov, V.V., Kavyrashina, K.V., and Podlovchenko, B.I., Russ. J. Electrochem., 2012, vol. 48, p. 467.