Examples



mdbootstrap.com



 
Статья
2020

Investigation of Electrophysical Properties of ITO Films


Yu. S. ZhidikYu. S. Zhidik, P. E. TroyanP. E. Troyan, V. V. KozikV. V. Kozik, S. A. KozyukhinS. A. Kozyukhin, A. V. ZabolotskayaA. V. Zabolotskaya, S. A. KuznetsovaS. A. Kuznetsova
Российский физический журнал
https://doi.org/10.1007/s11182-020-02167-4
Abstract / Full Text

The results of a study of the electrophysical characteristics of ITO films obtained by magnetron sputtering are presented. It is shown that a significant increase in the electrical conductivity of ITO films is facilitated by high-temperature annealing due to two processes. First, the high-temperature treatment of ITO films after their synthesis promotes the formation of a crystal structure, which leads to an increase in the mobility of charge carriers. Second, as a result of high-temperature annealing, the impurity in ITO films becomes completely electrically active, which leads to an increase in the concentration of conduction electrons and a change of the semiconductor mechanism of electrical conductivity to the metallic one.

Author information
  • Tomsk State University of Control Systems and Radioelectronics, Tomsk, RussiaYu. S. Zhidik & P. E. Troyan
  • V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaYu. S. Zhidik
  • National Research Tomsk State University, Tomsk, RussiaV. V. Kozik, S. A. Kozyukhin, A. V. Zabolotskaya & S. A. Kuznetsova
  • Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, RussiaS. A. Kozyukhin
References
  1. T. V. Semikina, V. N. Komashchenko, and L. N. Shmyreva, Elektron. i Svyaz, No. 3, 20–28 (2010).
  2. P. I. Lazarenko, S. A. Kozyukhin, A. I. Mokshina, et al., Russ. Phys. J., 61, No. 1, 196–202 (2018).
  3. A. Facchetti and T. J. Marks, Transparent Electronics: From Synthesis to Applications, Wiley, NYSE (2010).
  4. T. Minami, Semicond. Sci. Technol., 20, No. 4, 35–44 (2005).
  5. L. P. Amosova, Fiz. Tekh. Poluprovodn., 49, No. 3, 426–430 (2015).
  6. G. Korotcenkov, M. Ivanov, L. Blinov, and J. R. Stetter, Thin Solid Films, 515, No. 7–8,. 3987–3996 (2007).
  7. M. G. Kim, N. A. Kanatzidis, A. Facchetti, and T. J. Marks, Nature Mater., 10, No. 5, 382–388 (2011).
  8. Yu. S. Zhidik and P. E.Troyan, Doklady TUSUR, P. 2, No. 2(26), 169–171 (2012).
  9. L. P. Amosova and M. V. Isaev, Zh. Tekh. Fiz., 84, Vyp. 10, 127–132 (2014).
  10. S. V. Smirnov, Research Methods of Materials and Structures of Electronics [in Russian], TUSUR, Tomsk (2007).
  11. L. Gupta, A. Mansingh, and P. K. Srivastava, Thin Solid Films, 176, No. 1, 33– 44 (1989).
  12. S. Calnan and A. N. Tiwari, Thin Solid Films, 518, No. 7, 1839–1849 (2010).
  13. L. R. Bitner, Materials of Electronic Engineering [in Russian], TUSUR, Tomsk (2019).
  14. Yu. N. Kul’chin, A. A. Pushkin, Yu. N. Malovitskii, et al., Fiz. Tverd. Tela, 51, No. 8, 1530–1532 (2009).