Experimental and Simulation of Electric Transport in Alkali Antimonite Glasses

M. Kubliha M. Kubliha , O. Bosak O. Bosak , P. Kostka P. Kostka , V. Labas V. Labas , S. Lukic-Petrovic S. Lukic-Petrovic , N. Celic N. Celic , P. Tanuska P. Tanuska , M. Kebisek M. Kebisek , M. T. Soltani M. T. Soltani
Российский электрохимический журнал
Abstract / Full Text

The non-linear response of various physical properties of glasses on mixing of alkali ions is a well-known anomaly in materials science. In this paper, the mixed alkali effect in antimony oxide based glasses with composition 60Sb2O3–20WO3–(20 – x)Li2O–x(M2O), where x = 0, 5, 10, 15, 20 (in mol %) and M = Na or K, is studied. The influence of Na/Li and K/Li ratios on ionic AC and DC conductivities is studied. Temperature dependences of the DC conductivity obey Arrhenius-like relation. The conductivity steeply decreases with increasing Na or K content due to larger ionic radius of Na or K ions compared to that of Li. The relation between composition and local movement of electrical charge was investigated and quantified using the measurement of thermally stimulated depolarization currents. The artificial neural network methods for optimizing experimental parameters used in this paper represent a new approach in comparison with works done on glasses with similar composition. The prepared numerical model could be used for the description of the influence of polarization parameters and the optimization of further measurements oriented on activation energies of ion polarization related to local transport of electrical charge, i.e. Li+ and Na+ ions in our case.

Author information
  • Faculty of Materials Science and Technology, Slovak University of Technology, 91724, Trnava, Slovakia

    M. Kubliha, O. Bošák, V. Labas, P. Tanuska & M. Kebisek

  • Laboratory of Inorganic Materials, Institute of Rock Structure and Mechanics of the Czech Academy of Sciences, V Holešovičkách, 18209, Prague 8, Czech Republic

    P. Kostka

  • Laboratory of Inorganic Materials, University of Chemistry and Technology Prague Technická, 16628, Prague 6, Czech Republic

    P. Kostka

  • University of Novi Sad, Faculty of Science, Department of Physics Trg Dositeja, 21000, Novi Sad, Serbia

    S. Lukic-Petrovic & N. Celic

  • Laboratoire de physique photonique et nanomatériaux multifonctionnels, University of Biskra, BP 145, Biskra, Algeria

    M. T. Soltani

  1. Swenson, J. and Adams, S., Mixed alkali effect in glasses, Phys. Rev. Lett., 2003, vol. 90, p. 155507.
  2. Kubliha, M., Maache, D., Bošák, O., Minárik, S., Trnovcová, V., Lukic-Petrovic, S., and Soltani, M.T., Mixed alkaline effect in antimony-based glasses, Russ. J. Electrochem., 2019, vol. 55, p. 510.
  3. Ouannes, K., Soltani, M.T., Poulain, M., Boulon, G., Alombert-Goget, G., Guyot, Y., Pillonnet, A., and Lebbou, K. Spectroscopic properties of Er3+-doped antimony oxide glass, J. Alloys Compd., 2014, vol. 603, p. 132.
  4. Zavadil, J., Ivanova, Z.G., Kostka, P., Hamzaoui, M., and Soltani, M.T., Photoluminescence study of Er-doped zinc–sodium–antimonite glasses, J. Alloys Compd., 2014, vol. 611, p. 111.
  5. Masuda, H., Ohta, Y., and Morinaga, K., Structure of binary antimony oxide glass, J. Jpn. Inst. Met., 1995, vol. 59, no. 1, p. 31.
  6. Som, T. and Karmakar, B., Efficient green and red fluorescence upconversion in erbium doped new low phonon antimony glasses, Opt. Mater., 2009, vol. 31, no. 4, p. 609.
  7. Qian, Q., Zhang, Q.Y., Jiang, H.F., Yang, Z.M., and Jiang, Z.H., The spectroscopic properties of Er3+-doped antimony-borate glasses, Phys. B, 2010, vol. 405, p. 2220.
  8. de Araujo, R.E., de Araujo, C.B., Poirier, G., Poulain, M., and Messaddeq, Y., Nonlinear optical absorption of antimony and lead oxyhalide glasses, Appl. Phys. Lett., 2002, vol. 81, no. 25, p. 4694.
  9. Terashima, K., Hashimoto, T., Uchnio, T., Kim, S., and Yoko, T., Structure and nonlinear optical properties of Sb2O3–B2O3 binary glasses, J. Ceram. Soc. Jpn., 1996, vol. 104, p. 1008.
  10. Minelly, J. and Ellison, A., Applications of antimony-silicate glasses for fiber optic amplifiers, Opt. Fiber Technol., 2002, vol. 8, p. 123.
  11. Kubliha, M., Soltani, M.T., Trnovcová, V., Legouera, M., Labaš, V., Kostka, P., Le Coq, D., and Hamzaoui, M., Electrical, dielectric, and optical properties of Sb2O3–Li2O–MoO3 glasses, J. Non-Cryst. Solids, 2015, vol. 428, p. 42.
  12. Kubliha, M., Investigating Structural Changes and Defects of Non-Metallic Materials via Electrical Methods, 1 st ed. Dresden: Forschungszentrum Dresden–Rossendorf, 2009.
  13. Kalužný, J., Kubliha, M., Labaš, V., Poulain, M., and Taibi, Y., Electrical and dielectrical properties of Sb2O3–V2O5–K2O glasses, J. Non-Cryst. Solids, 2009, vol. 355, nos. 37–42, p. 2031.
  14. Labaš, V., Poulain, M., Kubliha, M., Trnovcová, V., and Goumeidane, F., Electrical, dielectric and optical properties of Sb2O3–PbCl2–MoO3 glasses, J. Non-Cryst. Solids, 2013, vol. 377, p. 66.
  15. Castro, A., Bréhault, A., Carcreff, J., Bošák, O., Kubliha, M., Trnovcová, V., Dománková, M., Šiljegović, M., Calvez, L., Labaš, V., and Le Coq, D., Lithium and lead chloride antimonate glasses, J. Non-Cryst. Solids, 2018, vol. 499, p. 66.
  16. Aggarwal, Ch.C., Neural Networks and Deep Learning, Springer, 2018.
  17. TIBCO Statistica, 2020. https://www.tibco.com/.
  18. Cramer, C., Funke, K., Roling, B., Saatkamp, T., Wilmer, D., Ingram, M.D., Pradel, A., Ribes, M., and Taillades, G., Ionic and polaronic hopping in glass, Solid State Ionics, 1996, vol. 86, p. 481.
  19. Jonscher, A.K., Dielectric Relaxation in Solids, London: Chelsea Dielectrics Press, 1983.
  20. RossMacDonald, J., Possible universalities in the ac frequency response of dispersed, disordered materials, J. Non-Cryst. Solids, 1997, vol. 210, p. 70.
  21. Day, D.E., Mixed alkali glasses—their properties and uses, J. Non-Cryst. Solids, 1976, vol. 21, p. 343.
  22. Isard, J.O., The mixed alkali effect in glass, J. Non-Cryst. Solids, 1969, vol. 1, p. 235.
  23. Bunker, B.C., Arnold, G.W., Beauchamp, E.K., and Day, D.E., Mechanisms for alkali leaching in mized-NaK silicate glasses, J. Non-Cryst. Solids, 1983, vol. 58, p. 295.
  24. Bunde, A., Ingram, M.D., and Maass, P., The dynamic structure model for ion transport in glasses, J. Non-Cryst. Solids, 1994, vols. 172–174, p. 1222.
  25. Bunde, A., Ingram, M.D., Maass, P., and Ngai, K.L., Mixed alkali effects in ionic conductors: a new model and computer simulations, J. Non-Cryst. Solids, 1991, vols. 131–133, p. 1109.
  26. Balasubramanian, S. and Rao, K.J., A molecular dynamics study of the mixed alkali effect in silicate glasses, J. Non-Cryst. Solids, 1995, vol. 181, p. 157.
  27. Tomozawa, M., Alkali ionic transport in mixed alkali glasses, J. Non-Cryst. Solids, 1993, vol. 152, p. 59.
  28. Cramer, C., Brunklaus, S., Ratai, E., and Gao, Y., New mixed alkali effect in the ac conductivity of ion-conducting glasses, Phys. Rev. Lett., 2003, vol. 91, p. 266601.