Computer Simulation of an Electrode of Lithium-Ion Battery: Estimation of Ohmic Losses for Active-Material Grains Covered by a Conducting Film

Yu. G. Chirkov Yu. G. Chirkov , V. I. Rostokin V. I. Rostokin , A. M. Skundin A. M. Skundin , T. L. Kulova T. L. Kulova
Российский электрохимический журнал
Abstract / Full Text

The use of active materials with high resistivity in lithium-ion batteries necessitates covering the surface of active particles with electron-conducting films. If this measure is insufficient, then carbon black is added to the electrode active layer. The ohmic losses are assessed by computer simulation of electrode’s active layers with active grains covered by a carbon film. Electrode’s active layer is modeled as a set of equal-sized cubic grains of the active material (covered with a conducting film) and the electrolyte; the grains are randomly distributed throughout the active layer. It is shown how the effective conductivity of the active layer decreases in this case. Furthermore, account is taken of the fact that carbon films represent a set of islets, which results in an additional decrease in the effective conductivity of the active layer. By computer simulations in combination with the percolation theory, it is found how the addition of carbon black can increase the conductivity of electrode’s active layer.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia

    Yu. G. Chirkov, A. M. Skundin & T. L. Kulova

  • National Research Nuclear University—Moscow Engineering Physics Institute, Moscow, 115409, Russia

    V. I. Rostokin

  1. Julien, Ch., Mauger, A., Vijh, A., and Zaghib, K., Lithium Batteries. Science and Technology, Heidelberg: Springer, 2016.
  2. Huang, H., Yin, S.C., and Nazar, L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid State Lett., 2001, vol. 4, p. A170.
  3. Kostecki, R., Schnyder, B., Alliata, D., Song, X., Kinoshita, K., and Kotz, R., Surface studies of carbon films from pyrolyzed photoresist, Thin Solid Films, 2001. vol. 396. p. 36.
  4. Ravet, N., Chouinard, Y., Magnan, J.F., Besner, S., Gauthier, M., and Armand, M., Electroactivity of natural and synthetic triphylite, J. Power Sources, 2001, vol. 97, p. 503.
  5. Jung, H.-G, Kim, J., Scrosati, B., and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.
  6. Ding, Y., Jiang, Y., Xu, F., Yin, J., Ren, H., Zhuo, Q., Long, Z., and Zhang, P., Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method, Electrochem. Comm., 2010, vol. 12, p. 10.
  7. Huang, Y.-G., Zheng, F.-H., Zhang, X.-H., Li, Q.-Y., and Wang, H.-Q., Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source, Electrochim. Acta, 2014, vol. 130, p. 740.
  8. Hong, S. A., Kim, D. H., Chung, K. Y., Chang, W., Yoo, J., and Kim, J., Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance, J. Power Sources, 2014, vol. 262, p. 219.
  9. Wang, J. and Sun, X., Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries, Energy Environ. Sci., 2012, vol. 5, p. 5163.
  10. Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, p. A207.
  11. Swain, P., Viji, M., Mocherla, P.S.V., and Sudakar, C., Carbon coating on the current collector and LiFePO4 nanoparticles—Influence of sp2 and sp3-like disordered carbon on the electrochemical properties, J. Power Sources, 2015, vol. 293, p. 613.
  12. Fan, Q., Lei, L., Chen, Y., and Sun, Y., Biotemplated synthesis of LiFePO4/C matrixes for the conductive agent-free cathode of lithium ion batteries, J. Power Sources, 2013, vol. 244, p. 702.
  13. Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., and Thackeray, M.M., Studies of Mg-substituted Li4–xMgxTi5O12 spinel electrodes (0 < x < 1) for lithium batteries, J. Electrochem. Soc., 2001, vol. 148, p. A102.
  14. Prosini, P.P., Mancini, R., Petrucci, L., Contini, V., and Villano, P., Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 2001, vol. 144, p. 185.
  15. Wolfenstine, J., Lee, U., and Allen, J.L., Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere, J. Power Sources. 2006, vol. 154, p. 287.
  16. Hu, X., Lin, Z., Yang, K., Huai, Y., and Deng, Z., Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction, Electrochim. Acta., 2001, vol. 56, p. 5046.
  17. Chung, S.-Y., Bloking, J.T., and Chiang, Y.-M., Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater., 2002, vol. 1, p. 123.
  18. Yang, X., Xu, Y., Zhang, H., Huang, Y., Jiang, Q., and Zhao, Ch., Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, Electrochim. Acta, 2013, vol. 114, p. 259.
  19. Yuan, T., Yu, X., Cai, R., Zhou, Y., and Shao, Z., Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance, J. Power Sources, 2010, vol. 195, p. 4997.
  20. Jung, H.-G., Kim, J., Scrosati, and Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, vol. 196, p. 7763.
  21. Oh, J., Lee, J., Hwang, T., Kim, J.M., Seoung, K.-D., and Piao, Y., Dual layer coating strategy utilizing Ndoped carbon and reduced graphene oxide for highperformance LiFePO4 cathode material, Electrochim. Acta, 2017, vol. 231, p. 85.
  22. Tu, X., Zhou, Y., Tian, X., Song, Y., Deng, Ch., and Zhu, H., Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries, Electrochim. Acta, 2016, vol. 222, p. 64.
  23. Tao, Sh., Huang, W., Wu, G., Zhu, X., Wang, X., Zhang, M., Wang, Sh., Chu, W., Song, L., and Wu, Z., Performance enhancement of lithium-ion battery with LiFePO4@C/RGO hybrid electrode, Electrochim. Acta, 2014, vol. 144, p. 406.
  24. He, Y.-B., Ning, F., Li, B., Song, Q.-Sh., Lv, W., Du, H., Zhai, D., Su, F., Yang, Q.-H., and Kang, F., Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode, J. Power Sources, 2012, vol. 202, p. 253.
  25. Guo, X., Wang, Ch., Chen, M., Wang, J., and Zheng, J., Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance, J. Power Sources, 2012, vol. 214, p. 107.
  26. Fang, W., Zuo, P., Ma, Y., Cheng, X., Liao, L., and Yin, G., Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery, Electrochim. Acta, 2013, vol. 94, p. 294.
  27. Qin, G., Wu, Q., Zhao, J., Ma, Q., and Wang, Ch., C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries, J. Power Sources, 2014, vol. 248, p. 588.
  28. Miao, C., Bai, P. Jiang, Q., Sun, Sh., and Wang, X., A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery, J. Power Sources, 2014, vol. 246, p. 232.
  29. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of negative electrode operation in lithium-ion battery: Model of equal-sized grains, galvanostatic discharge mode, calculation of characteristic parameters, Russ. J. Electrochem., 2011, vol. 47, p. 59.
  30. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer modeling of positive electrode operation in lithium-ion battery: Model of equal-sized grains, percolation calculations, Russ. J. Electrochem., 2011, vol. 47, p. 71.
  31. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Computer simulation of positive electrode operation in lithium-ion battery: Optimization of active mass composition, Russ. J. Electrochem., 2012, vol. 48, p. 895.
  32. Chirkov, Yu.G., Porous electrodes in electrochemical technologies, Al’tern. Energ. Ecol., 2014, no. 9, p. 55 [in Russian].
  33. Skundin, A.M., Chirkov, Yu.G., and Rostokin, V.I., Lithium-ion batteries: Computer simulation and problems of capacity dependences on charge/discharge currents, Al’tern. Energ. Ecol., 2014, no. 13, p. 80 [in Russian].
  34. Tarasevich, Yu.Yu., Perkolyatsiys: teoriya, prilozheniyz, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2011 [in Russian].
  35. Chirkov, Yu.G., The theory of porous electrodes: percolation, calculation of percolation lines, Russ. J. Electrochem., 1999, vol. 35, p. 1281.
  36. Kirkpatrick, S., Percolation and conduction, Rev. Mod. Phys., 1973, vol. 45, p. 574.
  37. Stauffer, D., Scaling theory of percolation clusters, Phys. Reports, 1979, vol. 54, p. 1.