Examples



mdbootstrap.com



 
Статья
2017

Two-level iterative method for non-stationary mixed variational inequalities


I. V. KonnovI. V. Konnov,  Salahuddin Salahuddin
Русская математика
https://doi.org/10.3103/S1066369X17100061
Abstract / Full Text

We consider a mixed variational inequality problem involving a set-valued nonmonotone mapping and a general convex function, where only approximation sequences are known instead of exact values of the cost mapping and function, and feasible set. We suggest to apply a two-level approach with inexact solutions of each particular problem with a descent method and partial penalization and evaluation of accuracy with the help of a gap function. Its convergence is attained without concordance of penalty, accuracy, and approximation parameters under coercivity type conditions.

Author information
  • Kazan Federal University, ul. Kremlyovskaya 18, Kazan, 420008, RussiaI. V. Konnov
  • Jazan University, Jazan, Saudi Arabia Salahuddin
References
  1. Lescarret, C. “Cas d’Addition des Applications MonotonesMaximales dan un Espace de Hilbert”, in Compt. Rend. Acad. Sci. (Paris, 1965), 261, pp. 1160–1163.
  2. Browder, F. E. “On the Unification of the Calculus of Variations and the Theory of Monotone Nonlinear Operators in Banach Spaces”, Proc. Nat. Acad. Sci. USA 56 (2), 419–425 (1966).
  3. Duvaut, D. and Lions, J.-L. Les Inéquations en Mechanique et Physique, Dunod, Paris, 1972; Nauka, Moscow, 1980).
  4. Panagiotopoulos, P. D. Inequality Problems in Mechanics and Their Applications, Birkhauser, Boston, 1985; Mir, Moscow, 1989).
  5. Patriksson, M. Nonlinear Programming and Variational Inequality Problems: A Unified Approach (Kluwer Academic Publishers, Dordrecht, 1999).
  6. Konnov, I. V. Combined Relaxation Methods for Variational Inequalities (Springer, Berlin, 2001).
  7. Konnov, I. V. Nonlinear Optimization and Variational Inequalities (Kazan Univ. Press, Kazan, 2013) [in Russian].
  8. Alart, P., Lemaire, B. “Penalization in Non-Classical Convex Programming via Variational Convergence”, Math. Program. 51, No. 1, 307–331 (1991).
  9. Cominetti, R. “Coupling the Proximal Point Algorithm With Approximation Methods”, J. Optim. Theory Appl. 95, No. 3, 581–600 (1997).
  10. Antipin, A. S. and Vasil’ev, F. P. “A Stabilization Method for Equilibrium Programming Problems With an Approximately Given Set”, Comput. Math. Math. Phys. 39, No. 11, 1707–1714 (1999).
  11. Salmon, G., Nguyen, V. H., Strodiot, J. J. “Coupling the Auxiliary Problem Principle and Epiconvergence Theory for Solving General Variational Inequalities”, J. Optim. Theory Appl. 104, No. 3, 629–657 (2000).
  12. Kaplan, A., Tichatschke, R. “A General View on Proximal Point Methods for Variational Inequalities in Hilbert Spaces”, J. Nonlin. Conv. Anal. 2, No. 3, 305–332 (2001).
  13. Konnov, I. V. “Application of Penalty Methods to Non-Stationary Variational Inequalities”, Nonlinear Analysis: Theory, Methods and Appl. 92, No. 1, 177–182 (2013).
  14. Konnov, I. V. “Application of the Penalty Method to Nonstationary Approximation of an Optimization Problem”, RussianMathematics 58, No. 8, 49–55 (2014).
  15. Konnov I.V. “An Inexact Penalty Method for Non-Stationary Generalized Variational Inequalities”, Setvalued and variational anal. 23, No. 2, 239–248 (2015).
  16. Fukushima, M., Mine, H. “A Generalized Proximal Point Algorithm for Certain Non-Convex Minimization Problems”, Intern. J. Syst. Sci. 12, No. 8, 989–1000 (1981).
  17. Patriksson, M. “Cost Approximation: AUnified Framework of DescentAlgorithms forNonlinear Programs”, SIAM J. Optim. 8, No. 2, 561–582 (1998).
  18. Ermoliev, Y. M., Norkin, V. I., Wets, R. J. B. “The Minimization of Semicontinuous Functions: Mollifier Subgradient”, SIAM J. Contr. Optim. 33, No. 1, 149–167 (1995).
  19. Czarnecki, M.-O., Rifford, L. “Approximation and Regularization of Lipschitz Functions: Convergence of the Gradients”, Trans.Amer.Math. Soc. 358, No. 10, 4467–4520 (2006).
  20. Gwinner, J. “On the Penalty Method for Constrained Variational Inequalities”, in Optimization: Theory and Algorithms, Ed. by J.-B. Hiriart-Urruty, W. Oettli, and J. Stoer (Marcel Dekker, New York, 1981), pp. 197–211.
  21. Blum, E., Oettli, W. “From Optimization and Variational Inequalities to Equilibrium Problems”, TheMath. Student 63, No. 1, 123–145 (1994).