Examples



mdbootstrap.com



 
Статья
2022

Investigation of the Structure of Cyclodextrin Nitrates by the X-Ray Diffraction Method


Yu. M. MikhailovYu. M. Mikhailov, L. B. RomanovaL. B. Romanova, M. A. RakhimovaM. A. Rakhimova, A. V. DarovskikhA. V. Darovskikh, A. E. TarasovA. E. Tarasov, D. Yu. KovalevD. Yu. Kovalev, A. P. SirotinaA. P. Sirotina
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427222010049
Abstract / Full Text

The structure of α-, β- and γ-cyclodextrin nitrates was analyzed by X-ray diffraction. It has been established that with an increase in the number of nitrate groups in β- and γ-cyclodextrin nitrates, the structure changes from crystalline at a degree of substitution of hydroxyl group 9–12% to amorphous at that of more than 40%, which is a consequence of steric factors and different degrees of polarity of functional groups (OH) and (ONO2). In the case of α-cyclodextrin nitrates, with an increase in the degree of substitution of OH group, the tendency to amorphization of the substance, which is characteristic of β- and γ-cyclodextrin nitrates, remains. However, at a degree of substitution of 98–100% the appearance of a new crystalline phase is observed. Probably, the molecules of α-cyclodextrin nitrates, which have only 6 glucopyranose units in their composition, undergo structural changes due to steric effects, resulting in the formation of a new molecular crystal structure with a more stable configuration.

Author information
  • Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast, RussiaYu. M. Mikhailov, L. B. Romanova, M. A. Rakhimova, A. V. Darovskikh & A. E. Tarasov
  • Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast, RussiaD. Yu. Kovalev
  • Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences, 119991, Moscow, RussiaA. P. Sirotina
References
  1. Del Valle, E.M.M., Process Biochem., 2004, vol. 39, no. 9, pp. 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9
  2. US Patent 5114506 (publ. 1992). Energetic Composites of Cyclodextrin Nitrate Esters and Nitrate Ester Plasticizers.
  3. US Patent 6468370 (publ. 2002). Gas Generating Composition for Vehicle Occupant Protection Apparatus.
  4. US Patent 6293201 (publ. 2001). Chemically Reactive Fragmentation Warhead.
  5. Mikhailov, Y.M., Romanova, L.B., Tarasov, A.E., and Darovskikh, A.V., Abstracts of Papers, Proceedings of 22th International Seminar “New Trends in Research of Energetic Material,” Czech Republic, Pardubice, 2019.
  6. Damodharan, L. and Pattabhi, V., Mol. Cryst. Liq. Cryst., 2004, vol. 423, pp. 17–35. https://doi.org/10.1080/15421400490502328
  7. Lindner, K. and Saenger, W., Acta. Cryst., 1982, vol. 38, pp. 203–210. https://doi.org/10.1107/S0567740882002386
  8. Calabro, M.L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., and Gamberini, G., J. Pharm. Biomed. Anal., 2004, vol. 35, pp. 365–377. https://doi.org/10.1016/j.jpba.2003.12.005
  9. Steiner, T., Koellner, G., Ali, S., Zakim, D., and Saenger, W., Biochem. Biophys. Res. Commun., 1992, vol. 188, pp. 1060–1066. https://doi.org/10.1016/0006-291x(92)91339-r
  10. Harata, K., Bull. Chem. Soc. Jpn., 1987, vol. 60, pp. 2763–2767. https://doi.org/10.1246/bcsj.60.2763
  11. Cunha-Silva, L., Jose J.P., and Teixeira-Dias., New J. Chem., 2004, vol. 28, pp. 200–206. https://doi.org/10.1039/b309491j
  12. Steiner, T. and Koellner, G., J. Am. Chem. Soc., 1994, vol. 116, pp. 5122–5128. https://doi.org/10.1021/ja00091a014
  13. Spulber, M., Pinteala, M., Fifere, A., Moldoveanu, C., Mangalagiu, L., Harabagiu, V., and Simionescu, B.C., J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 62, pp. 135–142. https://doi.org/10.1007/s10847-008-9448-y
  14. Ren, Y., Liu, Y., Niu, R., Liao, X., Zhang, J., and Yang, B., J. Molec. Structure, 2016, vol. 1117, pp. 1–7. https://doi.org/10.1016/j.molstruc.2016.03.071
  15. Nikitin, N.A., Vopr. Biol., Med. Farmatsevt. Khimii, 2015, no. 6, pp. 3–11.
  16. Fernandes, C.M., Vieira, M.V., and Veiga, F.J.B., Eur. J. Pharmacol. Sci., 2002, vol. 15, pp. 79–88. https://doi.org/10.1016/S0928-0987(01)00208-1
  17. Mikhailov, Y.M., Romanova, L.B., Tarasov, A.E., Rakhimova, M.A., Darovskikh, A.V., and Barinova, L.S., Russ. J. Appl. Chem., 2018, vol. 91, no. 7, pp. 1217–1221. https://doi.org/10.1134/S1070427218070224
  18. Romanova, L.B., Barinova, L.S., Lagodzinskaya, G.V., Kazakov, A.I., and Mikhailov, Y.M., Russ. J. Appl. Chem., 2014, vol. 87, no. 12, pp. 1884–1889. https://doi.org/10.1134/S1070427214120155
  19. Pure chemicals, Karyakin, Yu.V. and Angelov, I.I., Eds., Moscow: Chemistry, 1974.
  20. Rodin,, M.D., Romanova, L.B., Darovskih, A.V., Gorbunova, M.A., and Tarasov, A.E., J. Appl. Spectrosc., 2018, vol. 76, no. 4, pp. 639–644. https://doi.org/10.1007/s10812-018-0706-5