Examples



mdbootstrap.com



 
Статья
2021

Synthesis and study of new indoline spiropyran and its derivative with α-lipoic acid exhibiting low cytotoxicity


I. V. OzhoginI. V. Ozhogin, P. V. ZolotukhinP. V. Zolotukhin, V. V. TkachevV. V. Tkachev, A. D. PugachevA. D. Pugachev, A. S. KozlenkoA. S. Kozlenko, A. A. BelanovaA. A. Belanova, S. M. AldoshinS. M. Aldoshin, B. S. LukyanovB. S. Lukyanov
Российский химический вестник
https://doi.org/10.1007/s11172-021-3228-x
Abstract / Full Text

New indoline spiropyran was synthesized by the cyclocondensation of 5-chlorine-substituted Fischer base with 2,7-dihydroxy-1-naphthaldehyde. This spiropyran was used to prepare a new derivative of α-lipoic acid with potential biological activity, which can be considered as a promising photopharmacological agent. The structures of the synthesized compounds were determined by NMR and IR spectroscopy and mass spectrometry and were confirmed by X-ray diffraction. Biological assays using HeLa cells showed that the spirocyclic compounds possess low cytotoxicity even at relatively high concentrations.

Author information
  • Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 prosp. Stachki, 344090, Rostov-on-Don, Russian FederationI. V. Ozhogin, A. D. Pugachev, A. S. Kozlenko & B. S. Lukyanov
  • Academy of Biology and Biotechnology, Southern Federal University, 194/1 prosp. Stachki, 344090, Rostov-on-Don, Russian FederationP. V. Zolotukhin & A. A. Belanova
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 prosp. Akad. Semenova, 142432, Chernogolovka, Moscow Region, Russian FederationV. V. Tkachev & S. M. Aldoshin
References
  1. K. Hüll, J. Morstein, D. Trauner, Chem. Rev., 2018, 118, 21, 10710; DOI: https://doi.org/10.1021/acs.chemrev.8b00037.
  2. M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski, B. L. Feringa, Angew. Chem., Int. Ed., 2016, 55, 10978; DOI: https://doi.org/10.1002/anie.201601931.
  3. V. I. Minkin, Russ. Chem. Rev., 2013, 82, 1; DOI: https://doi.org/10.1070/RC2013v082n01ABEH004336.
  4. B. S. Lukyanov, M. B. Lukyanova, Chem. Heterocycl. Compd. (Engl. Transl.), 2005, 41, 281; DOI: https://doi.org/10.1007/s10593-005-0148-x.
  5. R. Klajn, Chem. Soc. Rev., 2014, 43, 148; DOI: https://doi.org/10.1039/C3CS60181A.
  6. A. R. Tuktarov, R. B. Salikhov, A. A. Khuzin, I. N. Safargalin, I. N. Mullagaliev, O. V. Venidiktova, T. M. Valova, V. A. Barachevsky, U. M. Dzhemilev, Mendeleev Commun., 2019, 29, 160; DOI: https://doi.org/10.1016/j.mencom.2019.03.014.
  7. O. G. Nikolaeva, O. Yu. Karlutova, A. A. Guseva, E. B. Gaeva, A. G. Starikov, A. D. Dubonosov, V. A. Bren, A. V. Metelitsa, V. I. Minkin, Russ. Chem. Bull., 2020, 69, 1378.
  8. N. N. Makhova, L. I. Belen’kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, L. L. Fershtat, S. A. Shevelev, V. Z. Shirinian, V. N. Yarovenko, Russ. Chem. Rev., 2020, 89, 55; DOI: https://doi.org/10.1070/RCR4914.
  9. J. Olejniczak, C. J. Carling, A. J. Almutairi, Control. Release, 2015, 219, 18; DOI: https://doi.org/10.1016/j.jconrel.2015.09.030.
  10. S. Son, E. Shin, B. S. Kim, Biomacromolecules, 2014, 15, 628; DOI: https://doi.org/10.1021/bm401670t.
  11. F. Cardano, E. Del Canto, S. Giordani, Dalton Trans., 2019, 48, 15537; DOI: https://doi.org/10.1039/c9dt02092f.
  12. Y. Luo, C. Wang, P. Peng, M. Hossain, T. Jiang, W. Fu, Y. Liao, M. J. Su, Mater. Chem. B, 2013, 1, 997; DOI: https://doi.org/10.1039/c2tb00317a.
  13. M. Wegener, M. J. Hansen, A. J. M. Driessen, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc., 2017, 139, 17979; DOI: https://doi.org/10.1021/jacs.7b09281.
  14. D. Ziegler, H. Nowak, P. Kempler, P. Vargha, P. A. Low, Diabetic Medicine, 2004, 21, 114; DOI:https://doi.org/10.1111/j.1464-5491.2004.01109.x.
  15. L. Rochette, S. Ghibu, A. Muresan, C. Vergely, Can. J. Physiol. Pharmacol., 2015, 93, 1021; DOI: https://doi.org/10.1139/cjpp-2014-0353.
  16. A. Maczurek, K. Hager, M. Kenklies, M. Sharman, R. Martins, J. Engel, D. A. Carlson, G. Münch, Adv. Drug Deliv. Rev., 2008, 60, 1463; DOI: https://doi.org/10.1016/j.addr.2008.04.015.
  17. S. S. Hardas, R. Sultana, A. M. Clark, T. L. Beckett, L. I. Szweda, M. P. Murphy, D. A. Butterfield, Redox Biol., 2013, 1, 80; DOI: https://doi.org/10.1016/j.redox.2013.01.002.
  18. S. K. Azzam, H. Jang, M. C. Choi, H. Alsafar, S. Lukman, S. Lee, Mol. Pharmaceutics, 2018, 15, 6, 2098; DOI: https://doi.org/10.1021/acs.molpharmaceut.7b01009.
  19. I. V. Ozhogin, P. V. Zolotukhin, E. L. Mukhanov, I. A. Rostovtseva, N. I. Makarova, V. V. Tkachev, D. K. Beseda, A. V. Metelitsa, B. S. Lukyanov, Bioorg. Med. Chem. Lett., 2021, 31, 127709; DOI: https://doi.org/10.1016/j.bmcl.2020.127709.
  20. Y. Li, Y. Z. Liu, J. M. Shi, S. B. Jia, Asian Pac. J. Trop. Med., 2013, 6, 548; DOI: https://doi.org/10.1016/S1995-7645(13)60094-2.
  21. D. R. Cremer, R. Rabeler, A. Roberts, B. Lynch, Regul. Toxicol. Pharmacol., 2006, 46, 29; DOI: https://doi.org/10.1016/j.yrtph.2006.06.004.
  22. N. E. Gel’man, E. A. Terent’eva, T. M. Shanina, L. M. Kiparenko, Metody kolichestvennogo organicheskogo elementnogo analiza [Methods of Quantitative Organic Elemental Analysis], Khimiya, Moscow, 1987, 296 pp. (in Russian).
  23. G. M. Sheldrick, SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin (USA), 2000.