Predicting Microdistribution of Metal Electrodeposition Rate from Electrolytes with Positive and Negative Leveling Power

S. S. Kruglikov S. S. Kruglikov , N. V. Titova N. V. Titova , N. E. Nekrasova N. E. Nekrasova , E. S. Kruglikova E. S. Kruglikova , A. V. Telezhkina A. V. Telezhkina , V. A. Brodskii V. A. Brodskii , V. A. Kolesnikov V. A. Kolesnikov , A. F. Gubin A. F. Gubin
Российский электрохимический журнал
Abstract / Full Text

The relationship between the leveling power of electrolytes, the primary current distribution, and the microdistribution of the metal deposition rate is considered. For electrolytes with positive, zero, and negative leveling power, the calculations of microdistribution of metal deposition rate are carried out with regard to the data on the primary current distribution obtained experimentally for a macromodel of the microprofile under study. Good agreement is demonstrated between the microdistribution calculated using the described method and the results of direct measurements of metal distribution over the surface with the regular twodimensional microprofile.

Author information
  • Mendeleev University of Chemical Technology, Moscow, 125047, Russia

    S. S. Kruglikov, N. E. Nekrasova, A. V. Telezhkina, V. A. Brodskii, V. A. Kolesnikov & A. F. Gubin

  • Sechenov First State Medical University, Moscow, 119991, Russia

    N. V. Titova

  • Moscow Polytechnical University, Moscow, 107023, Russia

    E. S. Kruglikova

  1. Datta, M. and Landolt, D., Fundamental aspects and applications of electrochemical microfabrication, Electrochim. Acta, 2000, vol. 45, p. 2535.
  2. Schultze, J.W. and Bressel, A., Principles of electrochemical micro-and nano-system technologies, Electrochim. Acta, 2001, vol. 47, p. 3.
  3. Razali, A.R. and Qin, Y.I., A review on micro-manufacturing, micro-forming and their key issues, Procedia Eng., 2013, vol. 53, p. 665.
  4. Fe, M.W. and Chan, W.L., A review on the state of the art microforming technologies, Intern. J. Adv. Des. Manuf. Technol., 2013, vol. 67, p. 2411.
  5. Gamburg, Y.D., Development of the electrocrystallization theory, Russ. J. Electrochem., 2016, vol. 52, p. 832.
  6. Volgin, V.M. and Davydov, A.D., Mass-transfer problems in the electrochemical systems, Russ. J. Electrochem., 2012. vol. 48, p. 565.
  7. Korotkov, V.V., Kudryavtsev, V.N., Kruglikov, S.S., Zagorskii, D.L., Sul’yanov, S.N., and Bedin, S.A., Electrodeposition of metals of iron group into the pores of track membranes for the preparation of nanowires, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 1, p. 24 [in Russian].
  8. Kruglikov, S.S., Certain features of the electrodeposition of metals and alloys under potentiostatic conditions, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 1, p. 40 [in Russian].
  9. Kruglikova, E.S., Kruglikov, S.S., and Nekrasova, N.E., On the microthrowing power of chromium plating baths, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, p. 4 [in Russian].
  10. Kruglikov, S.S., Nekrasova, N.E., Kasatkin, V.E., and Kornilova, S.I., Electrodeposition of metal layers with high mechanical strength and large true surface area using pulse current, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 4, p. 30 [in Russian].
  11. Zagorsky, D.L., Artemev, V.V., Korotkov, V.V., Kruglikov, S.S., and Bedin S.A., Specific features of growth and stability of nanowires of different metals, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, p. 99.
  12. Kardos, O. and Foulke, D.G., in: Adv. in Electrochemistry and Electrochemical Engineering, Delahay, P. and Tobias, C. (Eds.), New York: Wiley-Intersci., 1962, vol. 2, p. 145.
  13. Kruglikov, S.S., Macro-and microdistribution of the deposition rate in the plating of the components of electronic devices, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 1, p. 41 [in Russian].
  14. De Fogelaere, M., Somme, V., Springborn, H., and Michelsen-Mohammadein, U., High-speed plating for electronic applications, Electrochim. Acta, 2001, vol. 47, p. 109.
  15. Tajiri, K., Nakamura, T., Kabeya, Z., Yamanaka, Y., Naito, F., Kato, T., and Takasaki, T., Development of an electroformed copper lining for accelerator components, Electrochim. Acta, 2001, vol. 47, p. 143.
  16. Peeters, P., Von der Hoorn, G., Daenen, T., Kurowski, A., and Staikov, G., Properties of electroless and electroplated Ni-P and its application in microgalvanics, Electrochim. Acta, 2001, vol. 47, p. 161.
  17. Cachet-Vivier, C., Vivier, V., Cha, C.S., and Nedelev, Yu.L.T., Electrochemistry of powder material studied by means of the cavity microelectrode, Electrochim. Acta, 2001, vol. 47, p. 181.
  18. Andricacos, P.C., Ducovic, J.Y., Horkans, J., and Deligianni H., Damascene copper electroplating for chip interconnections, IBM J. Res. Dev., 1998, vol. 42, p. 567.
  19. Healy, J.P., Pletcher, D., and Goodenough, M., The chemistry of the additives in the acid copper electroplating bath. 1. Polyethylene-glycol and chloride-ion, J. Electroanal. Chem., 1992, vol. 338, p. 155.
  20. Kelly, J.J. and West, I.C., Copper deposition in the presence of polyethylene glycol. 1. Quartz crystal microbalance study, J. Electrochem. Soc., 1998, vol. 145, p. 3472.
  21. Kelly, J.J. and West, L.C., Copper deposition in the presence of polyethylene glycol. II. Electrochemical impedance spectroscopy, J. Electrochem. Soc., 1998, vol. 145, p. 3477.
  22. Feng, Z.V. and Gewirth, A.A., Inhibition due to the interaction of polyethylene glycol, chloride, and acid copper in plating baths: a surface-enhanced Raman study, J. Phys. Chem., 2003, vol. 107, p. 9415.
  23. Doblhofer, K., Wasle, S., Soares, D.M., Weil, K.G., and Ertl, G., An EQSM study of the electrochemical copper-(II)/copper(I)/copper system in the presence of PEG and chloride ions, J. Electrochem. Soc., 2003, vol. 150, p. 657.
  24. Kondo, K., Matsumoto, T., and Watanabe, K., Role of additives for copper damascene electrodeposition. Experimental study on inhibition and acceleration effects, J. Electrochem. Soc., 2004, vol. 151, p. 250.
  25. Hebert, K.R., Role of chloride ions in the suppression of copper electrodeposition by polyethylene glycol, J. Electrochem. Soc., 2005, vol. 152, p. 283.
  26. Cao, Y., Taephaisitphongse, P., Chalupa, R., and West, A.C., Three-additive model of superfilling of copper, J. Electrochem. Soc., 2001, vol. 148, p. 466.
  27. Georgiadou, M., Veyret, D., Sani, R.L., and Alkire, R.C., Simulation of shape evolution during electrodepiosition of copper in the presence of additive, J. Electrochem. Soc., 2001, vol. 148, p. 54.
  28. West, A.C., Mayer, S., and Reid J., A superfilling model that predicts bump formation, Electrochem. Solid-State Lett., 2001, vol. 4, p. 50.
  29. Moffat, N.P., Wheeler, T., Huber, W.H., and Josell, D., Superconformal electrodeposition of copper, Electrochem. Solid-State Lett., 2001, vol. 4, p. 26.
  30. Josell, D., Wheeler, D., Huber, W.H., Bonevich, J.E., and Mofatt, T.P., A simple equation for predicting superconformal electrodeposition in submicrometer trenches, J. Electrochem. Soc., 2001, vol. 148, p. 767.
  31. Akolkarm, R. and Landau, U., A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization, J. Electrochem. Soc., 2004, vol. 151, p. 702.
  32. Moffat, N.P., Wheeler, D., Edelstein, M.D., and Josell, D., Superconformal film growth: mechanism and quantification, IBM J. Res. Dev., 2005, vol. 49, p. 19.
  33. Dow, W.P., Yen, M.Y., Lin, W.B., and Ho, S.W., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating, J. Electrochem. Soc., 2005, vol. 152, p. 769.
  34. Akolkar, R. and Landau, U., Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization, J. Electrochem. Soc., 2009, vol. 156, p. 351.
  35. Mendez, J., Akolkar, R, and Landau, U., Polyether suppressors enabling copper metallization of high aspect ratio interconnects, J. Electrochem. Soc., 2009, vol. 156, p. 474.
  36. Adolf, J. and Landau, U., Predictive analytical fill model interconnect metallization providing optimal additives concentrations, J. Electrochem. Soc., 2001, vol. 158, p. 469.
  37. Huang, Q., Bakern-O’Neal, B.C., Kelly, J.J., Broekmann, P., Wirth, K., Emmet, C., Martin, M., Hahn, M., Wagner, A., and Mayer, D., Suppressor effects during copper superfilling of sub-100nm lines, Electrochem. Solid-State Lett., 2009, vol. 12, p. 27.
  38. Huang, Q., Liu, J., and Baker-O’Neal, B., An electrochemical method of suppressor screening for Cu plating in sub-100 nm lines, J. Electrochem. Soc., 2014, vol. 161, p. 207.
  39. Rayan, K., Dunn, K., and van Euisden, J., Development of electrochemical copper deposition screening methodologies for next generation additive selection, Microelectron. Eng., 2012, vol. 92, p. 91.
  40. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley-VCH, 2001.
  41. Boehme, L. and Landau, U., Rapid screening techniques of plating additives for bottom-up metallization of nano-scale features, J. Appl. Electrochem., 2016, vol. 46, p. 39.
  42. Gamburg, Y.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer, 2011.
  43. Kruglikov, S.S., Kudryavtsev, N.T., and Semina E.V., On the relationship between the molecular structure of organic inhibitors and their leveling effects in nickel electrodeposition, Proc. 7th International Metal Finishing Conf. (“Interfinish 68”), Hannover, May 1968, p. 66.
  44. Kruglikov, S.S., Surface leveling in the electrodeposition of metals, Itogi Nauki. Tekhn., Ser.: Elektrokhim., 1965, p. 117.
  45. Kruglikov, S.S. and Kovarskii, N.Ya., Microroughnesses leveling in the electrodeposition of metals, Itogi Nauki Tekhn., Ser.; Elektrokhim, 1975, vol. 10, p. 106.
  46. Kruglikov, S.S. and Smirnova, T.A., Leveling power: definition and methods of evaluation, Proc. 8th Congress of the International Union for Electrodeposition and Surface Finishing (“Interfinish-72”), (Zürich, Forster, 1972), p. 105.