Examples



mdbootstrap.com



 
Статья
2019

Electrochemical Activity of Metal-Ion Exchanger Nanocomposites


T. A. KravchenkoT. A. Kravchenko, D. D. VakhninD. D. Vakhnin, V. E. PridoroginaV. E. Pridorogina, M. F. ShafrovaM. F. Shafrova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519120097
Abstract / Full Text

The electroreduction of oxygen on thin-film metal–polymer nanocomposites that differ in the metal (Ag, Cu, Pd), content, particle size of the metal component, and ionic form of the Lewatit K2620 matrix (H+, Na+) was studied. The limiting oxygen diffusion current and effective number of electrons involved in oxygen electroreduction were determined. The limiting current and the number of electrons increased with the content of metal nanoparticles and transition to larger nanoparticles. The oxygen electroreduction occurs by the four-electron mechanism, whereby the hydrogen peroxide intermediate product does not accumulate, and oxygen is reduced directly to water molecules. The electrochemical reduction of the metal oxidation products and hydrogen evolution can be observed depending on the ionic form of the matrix.

Author information
  • Faculty of Chemistry, Voronezh State University, 394018, Voronezh, RussiaT. A. Kravchenko, D. D. Vakhnin, V. E. Pridorogina & M. F. Shafrova
References
  1. Kravchenko, T.A., Polyansky, L.N., Kalinichev, A.I., and Konev, D.V., Nanokompozity metall-ionoobmennik (Metal-Ion Exchanger Nanocomposites), Moscow: Nauka, 2009.
  2. Kravchenko, T.A., Zolotukhina, E.V., Chaika, M.Yu., and Yaroslavtsev, A.B., Elektrokhimiya nanokompozitov metall-ionoobmennik (Electrochemistry of Metal-Ion Exchanger Nanocomposites), Moscow: Nauka, 2013.
  3. Kravchenko, T.A., Khorolskaya, S.V., Polyanskiy, L.N., and Kipriyanova, E.S., Investigation of the mass transfer process in metal-ion exchanger nanocomposites, Nanocomposites: Synthesis, Characterization and Application, Wang, X., Ed., New York: Nova Science, 2013, pp. 329–348.
  4. Zolotukhina, E.V. and Kravchenko, T.A., Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers, Electrochim. Acta, 2011, vol. 56, p. 3597.
  5. Macanás, J., Ruiz, P., Alonso, A., Muñoz, M., and Muraviev, D.N., Ion exchange-assisted synthesis of polymer stabilized metal nanoparticles, Ion Exchange and Solvent Extraction. A Series of Advances, Sengupta, A.K., Ed., London: CRC, 2011, vol. 20, p. 1.
  6. Podlovchenko, B.I. and Andreev, V.N., Electrocatalysis on polymer-modified electrodes, Russ. Chem. Rev., 2002, vol. 71, no. 10, p. 837.
  7. Sun, Y.-P., Atorngitjawat, P., Lin, Y., Liu, P., Pathak, P., Bandara, J., Elgin, D., and Zhang, M., Nanoscale cavities in ionomer membrane for the formation of nanoparticles, J. Membr. Sci., 2004, vol. 245, p. 211.
  8. Corain, B., Zecca, M., Canton, P., and Centomo, P., Synthesis and catalytic activity of metal nanoclusters inside functional resins: an endeavour lasting 15 years, Philos. Trans. R. Soc., A, 2010, vol. 368, p. 1495.
  9. Patra, S., Sen, D., Pandey, A.K., Agarwal, Ch., Ramagiri, Sh.V., Bellare, J.R., Mazumder, S., and Goswami, A., Local conditions influencing in situ formation of different shaped silver nanostructures and subsequent reorganizations in ionomer membrane, J. Phys. Chem. C, 2013, vol. 117, p. 12026.
  10. Bastos-Arrieta, J., Muñoz, M., Ruiz, P., and Muraviev, D.N., Morphological changes of gel-type functional polymers after intermatrix synthesis of polymer stabilized silver nanoparticles, Nanoscale Res. Lett., 2013, vol. 8, p. 255.
  11. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Synthesis and transport properties of membrane materials with incorporated metal nanoparticles, Mendeleev Commun., 2010, vol. 20, p. 89.
  12. Volkov, V.V., Kravchenko, T.A., and Roldughin, V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev., 2013, vol. 82, no. 5, p. 465.
  13. Selvaraju, T. and Ramaraj, R., Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction, J. Phys. Indian Acad. Sci., 2005, vol. 65, no. 4, p. 713.
  14. Chabi, S. and Kheirmand, M., Electrocatalysis of oxygen reduction reaction on Nafion/platinum/gas diffusion layer electrode for PEM fuel cell, Appl. Surf. Sci., 2011, vol. 257, p. 10408.
  15. Sleightholme, A.E.S., Varcoe, J.R., and Kucernak, A.R., Oxygen reduction at the silver/hydroxide-exchange membrane interface, Electrochem. Commun., 2008, vol. 10, p. 151.
  16. Gorshkov, V.S., Zakharov, P.N., Polyanskii, L.N., Chayka, M.Yu., Kravchenko, T.A., and Krysanov, V.A., Composites of the ion-exchange membrane MF-4SK with metal nanoparticles and activated carbon Norit 30 in oxygen electroreduction, Sorbtsionnye Khromatogr.Protsessy, 2014, vol. 14, no. 4, p. 601.
  17. Damaskin, B.B., Petriy, O.A., and Tsirlina, G.A., Elektrokhimiya: uchebnoe posobie (Electrochemistry: A Study Guide), St. Petersburg: Lan, 2015.
  18. Chaika, M.Y., Kravchenko, T.A., Polyanskii, L.N., and Krysanov, V.A., Electroreduction of molecular oxygen on dispersed copper in an ion-exchange matrix, Russ. J. Electrochem., 2008, vol. 44, no. 11, p. 1244.
  19. Khorolskaya, S.V., Polyanskii, L.N., Kravchenko, T.A., and Konev, D.V., Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 6, p. 1000.
  20. Information on the Lewatit K 2620 product. https://www.lenntech.com/Data-sheets/Lewatit-K-2620-L.pdf.
  21. Fernandez, J.L., Walsh, D.A., and Bard, A.J., Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy M–Co (M: Pd, Ag, Au), J. Am. Chem. Soc., 2005, vol. 127, no. 1, p. 357.
  22. Pech-Pech, I.E., Dominic, F.G., and Perez-Robles, J.F., Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2, J. Power Sources, 2015, vol. 276, p. 374.
  23. Das, T.N., Saturation concentration of dissolved O2 in highly acidic aqueous solutions of H2SO4, Ind. Eng. Chem. Res., 2005, vol. 44, p. 1660.
  24. Gara, M. and Compton, R.G., Activity of carbon electrodes towards oxygen reduction in acid: A comparative study, New J. Chem., 2011, vol. 35, p. 2647.
  25. Tomashov, N.D., Korroziya metallov s kislorodnoi depolyarizatsiei (Corrosion of Metals with Oxygen Depolarization), Moscow: Acad. Nauk SSSR, 1947.
  26. Khimicheskoe osazhdenie metalov iz vodnykh rastvorov (Chemical Deposition of Metals from Aqueous Solutions), Sviridov, V.V., Ed., Minsk: Univ., 1987.
  27. Demarconnay, L., Coutanceau, C., and Leger, J.-M., Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts – effect of the presence of methanol, Electrochim. Acta, 2004, vol. 49, p. 4513.
  28. Sarapuu, A., Kallip, S., Kasikov, A., Matisen, L., and Tammeveski, K., Electroreduction of oxygen on gold-supported thin Pt films in acid solutions, J. Electroanal. Chem., 2008, vol. 624, p. 144.
  29. Yang, Y. and Zhou, Y., Particle size effects for oxygen reduction on dispersed silver + carbon electrodes in alkaline solution, Electroanal. Chem., 1995, vol. 397, p. 271.
  30. Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1984.
  31. Tomashov, N.D., Korroziya i zashchita metallov. Chast’ 1. Teoriya korrozii metallov (Metal Corrosion and Protection. Part 1. Metal Corrosion Theory), Moscow: Metallurgizdat, 1952.