Статья
2018

Anodic Synthesis of New Benzofuran Derivatives Using Active Methylene Group at Platinum Electrode


Jyoti Malviya Jyoti Malviya , R. K. P. Singh R. K. P. Singh , Shashi Kala Shashi Kala , L. K. Sharma L. K. Sharma
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518030096
Abstract / Full Text

A facile and Eco-compatible synthesis of benzofuran derivatives (4a–4h) has been carried out at platinum electrode by electrochemical oxidation of catechol in the presence of active methylene groups. Electro- organic synthesis has been performed in an undivided cell at ambient conditions. The products of electrolysis have been purified and characterized by FTIR, 1H NMR and 13C NMR and mechanism was deduced by voltammetric studies.

Author information
  • Electrochemical Laboratory of Green Synthesis Department of Chemistry, University of Allahabad, Allahabad, 211002, U.P., India

    Jyoti Malviya, R. K. P. Singh, Shashi Kala & L. K. Sharma

References
  1. Lo, Y.C., Liu, Y., and Burka, L.T., A model for catecholcontaining antioxidants neuronal effects of 4-t-butylcatechol, Toxicol. Appl. Pharmacol., 2008, vol. 228, p. 247.
  2. Rao, C.V., Desai, D., and Reddy, B.S., Chemoprevention of colon carcinogenesis by phenylethyl-3-methylcaffeate, Cancer Res., 1995, vol. 55, p. 2310.
  3. Nomura, M., Kaji, A., Miyamoto, W., and Ma, K., Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester, Mol. Carcinog., 2001, vol. 31, p. 83.
  4. Kubo, I., Xiao, P., and Fujita, K., Antifungal activity of octyl gallate: Structural criteria and mode of action, Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 347.
  5. Fung-Tomc, J., Bush, K., and Bonner, R.E.D., Antibacterial activity of BMS-180680, a new catechol-containing monobactam, Antimicrob, Agents Chemother., 1997, vol. 41, p. 1010.
  6. Wang, W.L., Chai, S.C., and Ye, Q.Z., Synthesis and structure-function analysis of Fe(II)-form-selective antibacterial inhibitors of Escherichia coli methionine aminopeptidase, Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 1080.
  7. King, P.J., Peter, J.P., and Kim, W.E., Structure–activity relationships: Analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication, J. Med. Chem., 1999, vol. 42, p. 497.
  8. Robinson, W.E., Jr., Reinicke, M.G., and Chow, S.A., Inhibitors of HIV-1 replication that inhibit HIV integrase, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, p. 6326.
  9. Zhao, X.Z., Semenova, E.A., and Pommier, T.R., Jr., 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors, J. Med. Chem., 2008, vol. 51, p. 251.
  10. Schweigert, N., Zehnder, A.J.B., and Eggen, R.I.L., Acid/base and hydrogen bonding effects on the protoncoupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, 1H NMR and computation, Environ. Microbial., 2001, vol. 3, p. 81.
  11. AMICBASE-ESSOIL Database on Natural Antimicrobials, Germany: Review Science, 1999–2002.
  12. Halabalaki, M., Aligiannis, N., and Skaltsounis, A., Three new arylobenzofurans from Onobrychis ebenoides and evaluation of their binding affinity for the estrogen receptor, J. Nat. Prod., 2000, vol. 63, p.1672.
  13. Angerer, E., von Biberger, C., and Leitchtl, S., Studies on heterocyde-based pure estrogen antagonists, Ann. N.Y. Acad. Sci., 1995, vol. 761, p. 176.
  14. Teo, C.C., Kon, O.L., and Sim, K.Y., Synthesis of 2-(p-chlorobenzyl)-3-aryl-6-methoxybenzofurans as selective ligands for antiestrogen-binding sites. Effects on cell proliferation and cholesterol synthesis, J. Med. Chem., 1992, vol. 35, p. 1330.
  15. Gesser, G.A., Faghih, R., and Cowart, M.D., Structure–activity relationships of arylbenzofuran H3 receptor antagonists, Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 2559.
  16. Cowart, M., Pratt, J.K., and Hancock, A.A., A new class of potent non-imidazole H3 antagonists: 2-aminoethylbenzofurans, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 689.
  17. Hocke, C., Prante, O., and Kuwert, T., Synthesis and radioiodination of selective ligands for the dopamine D3 receptor subtype, Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3963.
  18. Hu, Y., Xiang, J.S., and Levin, L.I., Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis, Bioorg. Med. Chem., 2005, vol. 13, p. 6629.
  19. Ramirez, F. and Dershowitz, S., The structure of quinone-donor adducts, I. The action of triphenylphosphine on p-benzoquinone, 2,5-dichloro-p-benzoquinone and chloranil, J. Am. Chem. Soc., 1956, vol. 78, p. 5614.
  20. Nematollahi, D. and Rafiee, M., Diversity in electrochemical oxidation of dihydroxybenzoic acids in the presence of acetylacetone. A green method for synthesis of new benzofuran derivatives, Green Chem., 2005, vol. 7, p. 638.
  21. Maleki, A. and Nematollahi, D., An efficient electrochemical method for the synthesis of methylene blue, Electrochem. Commun., 2009, vol. 11, p. 2261.
  22. Steckhan, E., Arns, T., and Putter, H., Environmental protection and economization of resources by electroorganic and electroenzymatic syntheses, Chemosphere, 2001, vol. 43, p. 63.
  23. Asami, R., Atobe, M., and Fuchigami, T., Electropolymerization of an immiscible monomer in aqueous electrolytes using acoustic emulsification, J. Am. Chem. Soc., 2005, vol. 127, p. 13160.
  24. Fry, J., Synthetic Organic Electrochemistry, New York: Wiley, 1989.
  25. Sharma, L.K., Singh, S., and Singh, R.K.P., A Novel and facile environmentally benign oxidative electrocyclization of acylthiosemicarbazone into biodynamic 1,3,4-oxadiazoles, J. Indian Chem. Soc., 2011, vol. 88, p. 155.
  26. Sharma, L.K., Singh, S., and Singh, R.K.P., Green synthesis of 2-amino-5-substituted-1,3,4-oxadiazoles at the platinum anode in acetic acid, Indian J. Chem. B, 2011, vol. 50, p. 110.
  27. Sharma, L.K., Kumar, S., and Singh, R.K.P., Electrochemical synthesis of 5-substituted-2-amino (substituted amino)-1,3,4-oxadiazoles at the platinum electrode, Russ. J. Electrochem., 2010, vol. 46, no. 1, p. 37.
  28. Singh, S., Sharma, L.K., and Singh, R.K.P., Electrochemically initiated oxidative cyclization: A versatile route for the synthesis of 5-substituted 2-amino-1,3,4-oxadiazoles, Montash fur Chemie, 2012, vol. 143, p. 1427.
  29. Chechina, O.N., Electrosynthesis of dihydroperfluoropentanol in a water–ethanol solution, Russ. J. Electrochem., 2015, vol. 51, p. 1119.
  30. Hartmer, M.F. and Waldvogel, S.R., Electroorganic synthesis of nitriles via a halogen-free domino oxidation–reduction sequence, Chem. Commun., 2015, vol. 51, p. 16346.
  31. Nematollahi, D., Habibi, D., and Rahmati, M., A facile electrochemical method for synthesisof new benzofuran derivatives, J. Org. Chem., 2004, vol. 69, p. 2637.
  32. Fakhari, A.R., Nematollahi, D., and Shamsipur, M., Electrochemical synthesis of 5,6-dihydroxy-2-methyl-1-benzofuran-3-carboxylate derivatives, Tetrahedron, 2007, vol. 63, p. 3894.
  33. Davarani, S.S.H., Nematollahi, D., and Shamsipur, M., Electrochemical oxidation of 2,3-dimethylhydroquinone in the presence of 1,3-dicarbonyl compounds, J. Org. Chem., 2006, vol. 71, p. 2139.
  34. Nematollahi, D., Alimoradi, M., and WaqifHusain, S., Electrochemical synthesis of new catechol derivatives, Electrochim. Acta, 2006, vol. 51, p. 2620.
  35. Nematollahi, D., Workington, M.S., and Tammari, E., Electrochemical oxidation of catechol in the presence of cyclopentadiene. Investigation of electrochemically induced Diels–Alder reactions, Chem. Commun., 2006, vol. 15, p. 1631.
  36. Golabi, S.M. and Nematollahi, D.J., Electrochemical study of 3,4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives, Electroanal. Chem., 1997, vol. 430, p. 141.
  37. Nematollahi, D. and Forooghi, Z., Electrochemical oxidation of catechols in the presence of 4-hydroxy-6- methyl-2-pyrone, Tetrahedron, 2002, vol. 58, p. 4949.
  38. Golabi, S.M. and Nematollahi, D., Electrochemical study of catechol and some 3-substituted catechols in the presence of 4-hydroxy coumarin: application to the electro-organic synthesis of new coumestan derivatives, J. Electroanal. Chem., 1997, vol. 420, p. 127.
  39. Nematollahi, D. and Rafiee, M.J., Electrochemical oxidation of catechols in the presence of acetylacetone, Electroanal. Chem., 2004, vol. 566, p. 31.