Статья
2017

Asymmetrical nanopores in track membranes: Fabrication, the effect of nanopore shape and electric charge of pore walls, promising applications


P. Yu. Apel P. Yu. Apel , I. V. Blonskaya I. V. Blonskaya , N. E. Lizunov N. E. Lizunov , K. Olejniczak K. Olejniczak , O. L. Orelovitch O. L. Orelovitch , B. A. Sartowska B. A. Sartowska , S. N. Dmitriev S. N. Dmitriev
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517010037
Abstract / Full Text

The properties of asymmetrical nanopores prepared by chemical etching of tracks of accelerated heavy ions are studied. Procedures are developed for controlling the size and shape of pores within wide limits. The presence of charged functional groups on pore walls is an intrinsic property of track membranes, which makes them a convenient object for studying electrokinetic phenomena in nanocapillaries. In electrolyte solutions, the asymmetrical “track” membranes demonstrate the diode effect. Two methods for fabricating asymmetrical nanopores in polyethylene terephthalate films are proposed and introduced into practice. Specific features of both methods, their advantages and drawbacks are considered. In addition to the brief survey of available information on diode-like track membranes, the new results on the mechanism of pore formation and the peculiarities of their geometry and electrokinetic properties are discussed. The emerging and potential applications of track membranes with asymmetrical pores are discussed briefly.

Author information
  • Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow region, 141980, Russia

    P. Yu. Apel, I. V. Blonskaya, N. E. Lizunov, K. Olejniczak, O. L. Orelovitch & S. N. Dmitriev

  • State Dubna University, Dubna, Moscow region, 141980, Russia

    P. Yu. Apel

  • Nicolaus Copernicus University, Toruń, Poland

    K. Olejniczak

  • Institute of Nuclear Chemistry and Technology, Warsaw, Poland

    B. A. Sartowska

References
  1. Martin, C.R., Chem. Rev., 2000, vol. 100, no. 7, p. 2575.
  2. Dekker, C., Nat. Nanotechnol., 2007, vol. 2, p. 209.
  3. Schoch, R.B., Han, J., and Renaud, P., Rev. Mod. Phys., 2008, vol. 80, p. 839.
  4. Ramirez, P., Aguilella-Arzo, M., Alcaraz, A., Cervera, J., and Aguilella, V.M., Cell Biochem. Biophys., 2006, vol. 44, p. 287.
  5. Kasianowicz, J.J., Brandin, E., Branton, D., and Deamer, D.W., Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 24, p. 13770.
  6. Wanunu, M., Phys. Life Rev., 2012, vol. 9, no. 2, p. 125.
  7. Haque, F., Li, J., Wu, H.-C., Liang, X.-J., and Guo, P., Nano Today, 2013, vol. 8, p. 56.
  8. Zhang, H., Tian, Y., and Jiang, L., Nano Today, 2016, vol. 11, p. 61.
  9. Fleischer, R.L., Price, P.B., and Walker, R.M., Nuclear Tracks in Solids, Berkeley: Univ. California Press, 1975.
  10. Apel, P.Yu., in Encyclopedia of Membrane Science and Technology, Hoek, E.M.V. and Tarabara, V.V., Eds, Wiley, 2013, p. 1.
  11. Cervera, J., Ramirez, P., Mafe, S., and Stroeve, P., Electrochim. Acta, 2011, vol. 56, p. 4504.
  12. Karl, D., Limnol. Oceanogr. Bull., 2007, vol. 16, p. 49.
  13. Meares, P. and Page, K.R., Philos. Trans. R. Soc., A, 1972, vol. 272, p. 1.
  14. Ibanez, J.A. and Tejerina, A.F., J. Non-Equilib. Thermodyn., 1982, vol. 7, p. 83.
  15. Lueck, H.B., Nucl. Instrum. Meth. Phys. Res., 1983, vol. 213, p. 507.
  16. Apel, P.Yu. and Pretzsch, G., Nucl. Tracks Radiat. Meas., 1986, vol. 11, nos. 1-2, p. 45.
  17. Berezkin, V.V., Nechaev, A.N., Fomichev, S.V., Mchedlishvili, B.V., and Zhitaryuk, N.I., Kolloidn. Zh., 1991, vol. 53, p. 339.
  18. Lev, A.A., Korchev, Y.E., Rostovtseva, T.K., Bashford, C.L., Edmonds, D., and Pasternak, C.A., Proc. R. Soc. B, 1993, vol. 252, p. 187.
  19. Pasternak, C.A., Bashford, C.L., Korchev, Y.E., Rostovtseva, T.K., and Lev, A.A., Colloids Surf. A, 1993, vol. 77, p. 119.
  20. Berezkin, V.V., Kiseleva, O.A., Nechaev, A.N., Sobolev, V.D., and Churaev, N.V., Kolloidn. Zh., 1994, vol. 56, p. 319.
  21. Rostovtseva, T.K., Bashford, C.L., Alder, G.M., Hill, G.H., McGiffert, C., Apel, P.Yu., Lowe, G., and Pasternak, C.A., J. Membr. Biol., 1996, vol. 51, p. 29.
  22. Ermakova, L.E., Sidorova, M.P., and Bezrukova, M.E., Colloid J., 1998, vol. 60, p. 765.
  23. Apel, P.Yu., Korchev, Yu.E., Siwy, Z., Spohr, R., and Yoshida, M., Nucl. Instrum. Meth. Phys. Res. B, 2001, vol. 184, p. 337.
  24. Orelovich, O.L. and Apel’, P.Yu., Instrum. Exp. Tech., 2001, vol. 44, p. 111.
  25. Apel, P.Yu., Blonskaya, I.V., Dmitriev, S.N., Orelovich, O.L., Presz, A., and Sartowska, B., Nanotecnology, 2007, vol. 18, p. 305302.
  26. Apel, P., Spohr, R., Trautmann, C., and Vutsadakis, V., Radiat. Meas., 1999, vol. 31, p. 51.
  27. Apel, P., Ramirez, P., Blonskaya, I.V., Orelovitch, O.L., and Sartowska, B.A., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 19214.
  28. Woermann, D., Nucl. Instrum. Meth. Phys. Res. B, 2002, vol. 194, p. 458.
  29. Cervera, J., Neumann, R., Mafe, S., and Ramirez, P., J. Chem. Phys., 2006, vol. 124, p. 104706.
  30. Siwy, Z.S., Adv. Funct. Mater., 2006, vol. 16, p. 735.
  31. Khokhlova, T.D. and Mchedlishvili, B.V., Colloid J., 1996, vol. 58, no. 6, p. 793.
  32. Apel’, P.Yu., Blonskaya, I.V., Levkovich, N.V., and Orelovich, O.L., Membr. Membr. Tekhnol., 2011, vol. 1, p. 111.
  33. Ramirez, P., Apel, P.Yu., Cervera, J., and Mafe, S., Nanotecnology, 2008, vol. 19, p. 315707.
  34. Lee, C., Cottin-Bizonne, C., Biance, A.-L., Joseph, P., Bocquet, L., and Ybert, C., Phys. Rev. Lett., 2014, vol. 112, p. 244501.
  35. Day, M. and Wiles, D.M., J. Appl. Polym. Sci., 1971, vol. 9, p. 665.
  36. Wang, X., Xue, J., Wang, L., Guo, W., Zhang, W., Wang, Y., Liu, Q., Ji, K., and Quyang, Q., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 7077.
  37. Qian, S., Joo, S.W., Ai, Y., Cheney, M.A., and Hou, W., J. Colloid Interface Sci., 2009, vol. 329, p. 376.
  38. Kravets, L.I., Dmitriev, S.N., Altynov, V.A., Satulu, V., and Dinescu, G., Russ. J. Electrochem., 2011, vol. 47, p. 470.
  39. Nasir, S., Ali, M., Ramirez, P., Gomez, V., Muench, F., Tahir, M.N., Zentel, R., Mafe, S., and Ensinger, W., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 12486.
  40. Neumcke, B., Biophysik, 1970, vol. 6, p. 231.
  41. Berezina, N.P., Kononenko, N.A., Filippov, A.N., Shkirskaya, S.A., Falina, I.V., and Sycheva, A.A.-R., Russ. J. Electrochem., 2010, vol. 46, p. 485.
  42. Loza, N.V., Dolgopolov, S.V., Kononenko, N.A., Andreeva, M.A., and Korshikova, Yu.S., Russ. J. Electrochem., 2015, vol. 51, p. 538.
  43. Olejniczak, K., Orelovitch, O.L., and Apel, P.Yu., Nucl. Instrum. Meth. Phys. Res. B, 2015, vol. 365, p. 646.
  44. Orelovich, O.L., Sartowska, O.L., Presz, A., and Apel, P.Yu., J. Microsc., 2010, vol. 237, p. 404.
  45. Zielinska, K., Gapeeva, A.R., Orelovich, O.L., and Apel, P.Yu., Nucl. Instrum. Meth. Phys. Res. B, 2014, vol. 326, p. 131.
  46. Choi, Y., Baker, L.A., Hillebrenner, H., and Martin, C.R., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 4976.
  47. Gyurcsanyi, R.E., Trends Anal. Chem., 2008, vol. 27, p. 627.
  48. Howorka, S. and Siwy, Z., Chem. Soc. Rev., 2009, vol. 38, p. 2360.
  49. Kocer, A., Tauk, L., and Dejardin, P., Biosens. Bioelectron., 2012, vol. 38, p. 1.
  50. Duan, C., Wang, W., and Xie, Q., Biomicrofluidics, 2013, vol. 7, p. 026501.
  51. Makra, I. and Gyurcsanyi, R.E., Electrochem. Commun., 2014, vol. 43, p. 55.
  52. Algieri, C., Drioli, E., Guzzo, L., and Donato, L., Sensors, 2014, vol. 14, p. 13863.
  53. Harms, Z.D., Haywood, D.G., Kneller, A.R., and Jacobson, S.C., Analyst, 2015, vol. 140, p. 4779.
  54. Zhang, Y., Kong, X.Y., Gao, L., Tian, Y., Wen, L., and Jiang, L., Materials, 2015, vol. 8, p. 6277.