Phase equilibria, water dissolution, and peculiarities of charge transfer in Ca-doped La2Zr2O7–α

E. P. Antonova E. P. Antonova , M. V. Ananyev M. V. Ananyev , A. S. Farlenkov A. S. Farlenkov , E. S. Tropin E. S. Tropin , A. V. Khodimchuk A. V. Khodimchuk , N. M. Porotnikova N. M. Porotnikova
Российский электрохимический журнал
Abstract / Full Text

A series of oxides La2 - x Ca x Zr2O7–α (x = 0.00, 0.05, 0.10, 0.15, 0.20) is synthesized. It is found that in samples with the calcium content x = 0.15, 0.20, the second phase Ca0.9La0.2Zr0.9O3 is present in the fraction increasing with the increase in x. The solubility limit of calcium to form solid solutions based on La2Zr2O7 corresponds to x = 0.1. By high-temperature gravimetry, the proton concentration in La1.95Са0.05Zr2O7–α is obtained as a function of temperature in the interval of 300–950°С in Н2О–О2 atmosphere. According to temperature programmed desorption studies, in the temperature range of 400–900°С at least two types of OH defects with different binding energies are present in the oxide lattice. The temperature dependences of conductivity are obtained for La1.95Са0.05Zr2O7–α in dry and humid air atmosphere in the temperature range of 350–800°С by the method of impedance spectroscopy. The electrolyte conductivity in humid air is shown to substantially exceed the corresponding values in dry air, which can be associated with manifestation of protonic conductivity in humid atmosphere. The dependences of oxide conductivity on the oxygen content in the gas phase are determined. The conductivity is divided into its ionic and hole components.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    E. P. Antonova, M. V. Ananyev, A. S. Farlenkov, E. S. Tropin, A. V. Khodimchuk & N. M. Porotnikova

  • Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, 620002, Russia

    E. P. Antonova, M. V. Ananyev & A. V. Khodimchuk

  1. Kreuer. K.D., Annu. Rev. Mater. Res., 2003, vol. 33, p. 333.
  2. Björketun, M.E., Knee, C.S., Nyman, B.J., and Wahnstrom, G., Solid State Ionics, 2008, vol. 178, p. 1642.
  3. Toyoura, K., Nakamura, A., and Matsunaga, K., J. Phys. Chem.C, 2015, vol. 119, p. 8480.
  4. Islam, Q.A., Nag, S., and Basu, R.N., Mater. Res. Bull., 2013, vol. 48, p. 3103.
  5. Omata, T. and Otsuka-Yao-Matsuo, S., J. Electrochem. Soc., 2001, vol. 148, p. E252.
  6. Omata, T., Ikeda, K., Tokashiki, R., and Otsuka-Yao-Matsuo, S., Solid State Ionics, 2004, vol. 167, p. 389.
  7. FullProf. The FullProf Team. http://www.ill.eu/ sites/fullprof/. Cited July 28, 2016.
  8. Farlenkov, A.S., Anan’ev, M.V., Tropin, E.S., Khodimchuk, A.V., and Kurumchin, E.Kh., Estestv. Tekh. Nauki, 2015, no. 10, p. 127.
  9. Udilov, A.E. and Vylkov, A.I., RF Patent 2395832, 2010.
  10. Kreuer, K.D., Adams, St., Munch, W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics, 2001, vol. 145, p. 295.
  11. Antonova, E.P., Yaroslavtsev, I.Yu., Bronin, D.I., Balakireva, V.B., Gorelov, V.P., and Tsidil’kovskii, V.I., Russ. J. Electrochem., 2010, vol. 46, p. 741.