Статья
2019

Microstructural Influence on Electrochemical Properties of LiFePO4/C/Reduced Graphene Oxide Composite Cathode


G. Kucinskis G. Kucinskis , G. Bajars G. Bajars , K. Bikova K. Bikova , K. Kaprans K. Kaprans , J. Kleperis J. Kleperis
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519060120
Abstract / Full Text

LiFePO4/C/reduced graphene oxide (rGO) composites with different morphologies were synthesized, allowing evaluation of the electrochemical performance as a function of the sample morphology. LiFePO4 particles anchored on rGO sheets and rGO sheets wrapping LiFePO4 agglomerations were two of the most pronounced features observed. The structure with LiFePO4 particles anchored on rGO sheets was found to be the most optimal and give rise to both increased capacity and improved rate capability.

Author information
  • Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia

    G. Kucinskis, G. Bajars, K. Bikova, K. Kaprans & J. Kleperis

References
  1. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., Mater. Res. Bull., 1980, vol. 15, p. 783.
  2. Liu, Z., Yu, A., and Lee, J.Y., J. Power Sources, 1999, vols. 81–82, p. 416.
  3. Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, p. 744.
  4. Thackeray, M.M., Kang, S.-H., Johnson, C.S., et al., J. Mater. Chem., 2007, vol. 17, p. 3112.
  5. Thackeray, M.M., Johnson, P.J., de Picciotto, L.A., et al., Mater. Res. Bull., 1984, vol. 19, p. 179.
  6. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 1990, vol. 137, p. 769.
  7. Padhi, A.K., Nanjundaswarny, K., and Goodenough, J., J. Electrochem. Soc., 1997, vol. 144, p. 1188.
  8. Mekonnen, Y., Sundararajan, A., and Sarwat, A.I., Proc. IEEE SoutheastCon2016, Norfolk, VA, March 30–Apr. 3, 2016, pp. 1–6.
  9. Park, M., Zhang, X., Chung, M., et al., J. Power Sources, 2010, vol. 195, p. 7904.
  10. Nishizawa, M., Koshika, H., Itoh, T., et al., Electrochem. Commun., 1999, vol. 1, p. 375.
  11. Zaghib, K., Shim, J., Guerfi, A., et al., Electrochem. Solid-State Lett., 2005, vol. 8, p. A207.
  12. Liu, D., Chen, L.-C., Liu, T.-J., et al., Adv. Chem. Eng. Sci., 2014, vol. 04, p. 515.
  13. Indrikova, M., Grunwald, S., Golks, F., et al., J. Electrochem. Soc., 2015, vol. 162, p. A2021.
  14. Zheng, H., Li, J., Song, X., et al., Electrochim. Acta, 2012, vol. 71, p. 258.
  15. Li, L., Wu, L., Wu, F., et al., J. Electrochem. Soc., 2017, vol. 164, p. A2138.
  16. Cao, Q., Zhang, H.P., Wang, G.J., et al., Electrochem. Commun., 2007, vol. 9, p. 1228.
  17. Zhang, H., Xu, Y., Zhao, C., et al., Electrochim. Acta, 2012, vol. 83, p. 341.
  18. Zhu, C., Mu, X., van Aken, P.A., et al., Angew. Chem. Int. Ed., 2014, vol. 53, p. 2152.
  19. Sun, X., Li, J., Shi, C., et al., J. Power Sources, 2012, vol. 220, p. 264.
  20. Liu, X.-M., Huang, Z.D., Oh, S.W., et al., Compos. Sci. Technol., 2012, vol. 72, p. 121.
  21. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Science, 2004, vol. 306, p. 666.
  22. Kucinskis, G., Bajars, G., and Kleperis, J., J. Power Sources, 2013, vol. 240, p. 66.
  23. Lerf, A., He, H., Forster, M., and Klinowski, J., J. Phys. Chem. B, 1998, vol. 102, p. 4477.
  24. He, H., Klinowski, J., Forster, M., and Lerf, A., Chem. Phys. Lett., 1998, vol. 287, p. 53.
  25. Zhou, X., Wang, F., Zhu, Y., and Liu, Z., J. Mater. Chem., 2011, vol. 21, p. 3353.
  26. Su, C., Bu, X., Xu, L., et al., Electrochim. Acta, 2012, vol. 64, p. 190.
  27. Yang, J., Wang, J., Wang, D., et al., J. Power Sources, 2012, vol. 208, p. 340.
  28. Zhang, Y., Wang, W., Li, P., et al., J. Power Sources, 2012, vol. 210, p. 47.
  29. Tang, Y., Huang, F., Bi, H., et al., J. Power Sources, 2012, vol. 203, p. 130.
  30. Xu, H., Chang, J., Sun, J., and Gao, L., Mater. Lett., 2012, vol. 83, p. 27.
  31. Wang, L., Wang, H., Liu, Z., et al., Solid State Ionics, 2010, vol. 181, p. 1685.
  32. Ding, Y., Jiang, Y., Xu, F., et al., Electrochem. Commun., 2010, vol. 12, p. 10.
  33. Wang, Y., Feng, Z.-S., Chen, J.-J., and Zhang, C., Mater. Lett., 2012, vol. 71, p. 54.
  34. Toprakci, O., Toprakci, H.A.K., Ji, L., et al., J. Renew. Sustain. Energy, 2012, vol. 4, p. 013121.
  35. Su, F.-Y., You, C., He, Y.-B., et al., J. Mater. Chem., 2010, vol. 20, p. 9644.
  36. Wang, H., Yang, Y., Liang, Y., et al., Angew. Chem. Int. Ed. Engl., 2011, vol. 50, p. 7364.
  37. Kim, J.-G., Kim, H.-K., Jegal, J.-P., et al., Proc. Int. Conf. on Nanomaterials Applications and Properties, Alushta, 2012, p. 3.
  38. Bak, S.-M., Nam, K., Lee, C., et al., J. Mater. Chem., 2011, vol. 21, p. 17309.
  39. Zhang, W., Zeng, Y., Xu, C., et al., Beilstein. J. Nanotechnol., 2012, vol. 3, p. 513.
  40. Rui, X., Sim, D., Wong, K., et al., J. Power Sources, 2012, vol. 214, p. 171.
  41. Jiang, Y., Xu, W., Chen, D., et al., Electrochim. Acta, 2012, vol. 85, p. 377.
  42. Liu, H., Yang, G., Zhang, X., et al., J. Mater. Chem., 2012, vol. 22, p. 11039.
  43. Zhu, J., Yang, R., and Wu, K., Ionics (Kiel), 2012, vol. 0. Available only online.
  44. Liu, H., Gao, P., Fang, J., and Yang, G., Chem. Commun. (Camb.), 2011, vol. 47, p. 9110.
  45. Du, Y., Tang, Y., Huang, F., and Chang, C., RSC Adv., 2016, vol. 6, p. 52279.
  46. Wi, S., Kim, J., Park, K., et al., RSC Adv., 2016, vol. 6, p. 105081.
  47. Jiang, G., Hu, Z., Xiong, J., et al., J. Alloys Compd., 2018, vol. 767, p. 528.
  48. Yuan, Z., Xue, Y., Sun, L., et al., Ferroelectrics, 2018, vol. 528, p. 1.
  49. Ma, H., Xiang, J., and Xia, X., Mater. Res. Bull., 2018, vol. 101, p. 205.
  50. Rosaiah, P., Zhu, J., Hussain, O.M., et al., J. Electroanal. Chem., 2018, vol. 811, p. 1.
  51. Wang, X., Feng, Z., Huang, J., et al., Carbon N Y, 2018, vol. 127, p. 149.
  52. Chen, M., Kou, K., Tu, M., et al., Solid State Ionics, 2017, vol. 310, p. 95.
  53. Juarez-Yescas, C., Ramos-Sánchez, G., and González, I., J. Solid State Electrochem., 2018, vol. 22, p. 3225.
  54. Yang, D., Velamakanni, A., Bozoklu, G., et al., Carbon N.Y., 2009, vol. 47, p. 145.
  55. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.
  56. Belharouak, I., Johnson, C., and Amine, K., Electrochem. Commun., 2005, vol. 7, p. 983.
  57. Nan, H.Y., Ni, Z.H., Wang, J., et al., J. Raman Spectrosc., 2013, vol. 44, p. 1018.
  58. Mattevi, C., Eda, G., Agnoli, S., et al., Adv. Funct. Mater., 2009, vol. 19, p. 2577.
  59. Erickson, K., Erni, R., Lee, Z., et al., Adv. Mater., 2010, vol. 22, p. 4467.
  60. Krishnan, D., Kim, F., Luo, J., et al., Nano Today, 2012, vol. 7, pp. 137–152.
  61. Wu, Z.-S., Zhou, G., Yin, L.-C., et al., Nano Energy, 2012, vol. 1, p. 107.
  62. Gaberscek, M., Dominko, R., and Jamnik, J., Electrochem. Commun., 2007, vol. 9, p. 2778.
  63. Wang, Y., Wang, J., Liao, H., et al., Int. J. Electrochem. Sci., 2013, vol. 8, p. 8730.
  64. Patoux, S., Wurm, C., Morcrette, M., et al., J. Power Sources, 2003, vols. 119–121, p. 278.
  65. Morcrette, M., Wurm, C., and Masquelier, C., Solid State Sci., 2002, vol. 4, p. 239.
  66. Hu, B., Wu, F.-Y., Lin, C.-T., et al., Nat. Commun., 2013, vol. 4, p. 1687.
  67. Zhao, Q., Zhang, Y., Meng, Y., et al., Nano Energy, 2017, vol. 34, p. 408.
  68. Duan, Y., Zhang, B., Zheng, J., et al., Nano Lett., 2017, vol. 17, p. 6018.
  69. Zhukovskii, Y.F., Balaya, P., Kotomin, E.A., and Maier, J., Phys. Rev. Lett., 2006, vol. 96, p. 058302.
  70. Yu, X.Q., Sun, J.P., Tang, K., et al., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9497.
  71. Shin, J.-Y., Samuelis, D., and Maier, J., Adv. Funct. Mater., 2011, vol. 21, p. 3464.
  72. Liu, E., Wang, J., Shi, C., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 18147.
  73. Kaprans, K., Bajars, G., Kucinskis, G., et al., IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 77, p. 012042.
  74. Kaprans, K., Mateuss, J., Dorondo, A., et al., Solid State Ionics, 2018, vol. 319, p. 1.
  75. Su, F.-Y., He, Y.-B., Li, B., et al., Nano Energy, 2012, vol. 1, p. 429.