Examples



mdbootstrap.com



 
Статья
2020

Thermal Oxidation Degradation of a Polymer Composite Material Based on Polytetrafluoroethylene and Oxyfluoride Glass


O. Zh. AyurovaO. Zh. Ayurova, N. M. KozhevnikovaN. M. Kozhevnikova, D. M. MognonovD. M. Mognonov, O. V. Il’inaO. V. Il’ina, M. S. DashitsyrenovaM. S. Dashitsyrenova, V. N. Kornopol’tsevV. N. Kornopol’tsev
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220070083
Abstract / Full Text

The thermal oxidative degradation of a polymer composite material based on polytetrafluoroethylene and oxyfluoride glass of composition 18BaF2–31SiO2–19B2O3–24BaO–8TiO2 under dynamic conditions has been studied. It is noted that the decomposition process takes place in several stages. The gaseous products of thermal oxidative destruction of the composite material were studied by mass spectrometry. The results of thermogravimetry and differential scanning calorimetry showed the stabilizing effect of oxyfluoride glass on the stability of polytetrafluoroethylene at elevated temperatures.

Author information
  • Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, 670047, Ulan-Ude, RussiaO. Zh. Ayurova, N. M. Kozhevnikova, D. M. Mognonov, O. V. Il’ina, M. S. Dashitsyrenova & V. N. Kornopol’tsev
References
  1. Liu, Z., Cai, X., Ke, X., You, F., Zhang, Q., and Gao, X., Adv. Polym. Tech., 2018, vol. 37, no. 8, pp. 2811–2819. https://doi.org/10.1002/adv.21953
  2. Moskalyuk, O.A., Samsonov, A.M., Semenova, I.V., Smirnova, V.E., and Yudin, V.E., Technical Phys., 2017, vol. 62, no. 2, pp. 294–298. https://doi.org/10.1134/S1063784217020219
  3. Li, Zongting, Yuan, Ying, Yao, Minghao, Cao, Lei, Bin, Tang, and Zhang, Shuren, Ceram. Int., 2019, vol. 45, no. 17. Part A, pp. 22015–22021. https://doi.org/10.1016/j.ceramint.2019.07.216
  4. Ayurova, O.Z., Kozhevnikova, N.M., Mognonov, D.M., Dashitsyrenova, M.S., Kornopol’tsev, V.N., Il’ina, O.V., and Nomoev, A.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 4, pp. 618–622. https://doi.org/10.1134/S1070427218040134
  5. Odochian, L., Moldoveanu, C., and Maftei, D., Thermochim. Acta, 2014, vol. 598, pp. 28–35. https://doi.org/10.1016/j.tca.2014.10.023
  6. Odochian, L., Moldoveanu, C., Mocan, A.M., and Carja, G., Thermochim. Acta, 2011, vol. 526, no. 1–2, pp. 205–212. https://doi.org/10.1016/j.tca.2011.09.019
  7. Kudashev, S.V., Gres’, I.M., Vaniev, M.A., Kuznetsov, M.V., Varfolomeev, M.F., and Emel’yanov, D.A., Russ. J Appl. Chem., 2018, vol. 91, no. 3, pp. 412–416. https://doi.org/10.1134/S1070427218030114
  8. Ignat’eva, L.N. and Buznik, V.M., Russ. J. Gen. Chem., 2009, vol. 79, no. 3, pp. 677–685. https://doi.org/10.1134/S1070363209030499
  9. Wang, R., Xu, G., and He, Y., E-Polymers, 2017, vol. 17, no. 3, pp. 215–220. https://doi.org/10.1515/epoly-2016-0059
  10. Eremyashev, V.E., Osipov, A.A., and Osipova, N.L., Glass Ceram., 2011, vol. 68, no. 7–8, pp. 205–208. https://doi.org/10.1007/s10717-011-9353-5
  11. Eremyashev, V.E. and Mironov, A.B., Inorg. Mater., 2015, vol. 51, no. 2, pp. 177–181. https://doi.org/10.1134/S0020168515020065
  12. Batueva, S.Yu. and Kozhevnikova, N.M., Inorg. Mater., 2018, vol. 54, no. 10, pp. 1039–1044. https://doi.org/10.1134/S0020168518100035